コード例 #1
0
            constant.args.continue_from)
        start_epoch = epoch  # index starts from zero
        verbose = constant.args.verbose

        if loaded_args != None:
            # Unwrap nn.DataParallel
            if loaded_args.parallel:
                logging.info("unwrap from DataParallel")
                model = model.module

            # Parallelize the batch
            if args.parallel:
                model = nn.DataParallel(model, device_ids=args.device_ids)
    else:
        if constant.args.model == "TRFS":
            model = init_transformer_model(constant.args, label2id, id2label)
            opt = init_optimizer(constant.args, model, "noam")
        else:
            logging.info("The model is not supported, check args --h")
    
    loss_type = args.loss

    if constant.USE_CUDA:
        model = model.cuda(0)

    logging.info(model)
    num_epochs = constant.args.epochs

    trainer = Trainer()
    trainer.train(model, train_loader, train_sampler, valid_loader_list, opt, loss_type, start_epoch, num_epochs, label2id, id2label, metrics)
コード例 #2
0
                                       num_workers=args.num_workers)
        valid_loader_list.append(valid_loader)

    start_epoch = 0
    metrics = None
    loaded_args = None
    if args.continue_from != "":
        logging.info("Continue from checkpoint:" + args.continue_from)
        model, vocab, opt, epoch, metrics, loaded_args = load_joint_model(
            args.continue_from)
        start_epoch = (epoch)  # index starts from zero
        verbose = args.verbose
    else:
        if args.model == "TRFS":
            model = init_transformer_model(args,
                                           vocab,
                                           is_factorized=args.is_factorized,
                                           r=args.r)
        else:
            logging.info("The model is not supported, check args --h")

    loss_type = args.loss

    if USE_CUDA:
        model = model.cuda()

    logging.info(model)
    num_epochs = args.epochs

    print("Parameters: {}(trainable), {}(non-trainable)".format(
        compute_num_params(model)[0],
        compute_num_params(model)[1]))