コード例 #1
0
def plot_power_spectrum(rec, fs, fr_low):
    img_path = str(get_project_root()) + "/img"
    f, Pxx_den = periodogram(rec, fs)
    fig = plt.figure(figsize=(20,5))
    inds = np.where(f > fr_low)
    plt.plot(f[inds], Pxx_den[inds])
    plt.xlabel('frequency [Hz]')
    plt.ylabel('PSD [V**2/Hz]')
    plt.show(block=True)
    fig.savefig(img_path + f"/periodogram.png")
    return None
コード例 #2
0
def nice_error_bar_scatter(x,y,error, title, xlabel,ylabel, save_to = None):
    img_path = str(get_project_root()) + "/img"
    fig = plt.figure(figsize = (40,20))
    plt.errorbar(x, y, yerr = error , color = 'red', ls='', marker='o',
             ecolor = 'gray', capsize = 3, linewidth = 3, alpha = 0.8)
    plt.title(title, fontsize = 20)
    plt.xlabel(xlabel, fontsize = 15)
    plt.ylabel(ylabel, fontsize = 15)
    plt.ylim(min(y-error)-0.2*abs(min(y-error)),1.2*max(y+error))
    plt.grid(True)
    plt.show()
    if save_to is not None:
        fig.savefig(img_path + '/' + save_to)
コード例 #3
0
def construct_and_run_model(dt, t_start, duration, amp, stoptime):
    data_folder = str(get_project_root()) + "/data"
    img_folder = f"{get_project_root()}/img"
    default_neural_params = json.load(
        open(f'{data_folder}/params/default_neural_params.json', 'r+'))
    population_names = [
        'PreI', 'EarlyI', "PostI", "AugE", "KF_t", "KF_p", "KF_relay",
        "NTS_drive", "Sw1", "Sw2", "Relay", "RampI"
    ]
    W, drives = set_weights_and_drives(1, 1, population_names)
    Network_model = construct_model(population_names, W, drives, dt,
                                    default_neural_params)
    run_model(Network_model, t_start, stoptime, amp, duration)
    V_array = Network_model.v_history
    t = np.array(Network_model.t)
    signals = Network_model.firing_rate(V_array, Network_model.V_half,
                                        Network_model.slope).T
    return signals, t
コード例 #4
0
ファイル: params_gen.py プロジェクト: ptolmachev/rCPG_swCPG
def generate_params(inh_NTS, inh_KF):
    params = dict()
    num_nrns = 18
    num_drives = 3
    x = [0.1, 1.0, 10][inh_NTS]  # Disinh-inh of NTS
    y = [0.1, 1.0, 10][inh_KF]  # Disinh-inh of KF
    # 0- PreI   # 1 - EarlyI  # 2 - PostI
    # 3 - AugE  # 4 - RampI   # 5 - Relay
    # 6 - Sw 1  # 7 - Sw2     # 8 - Sw3
    # 9 - KF_t   # 10 - KF_p   # 11 - KF_r
    # 12 - M_HN  # 13- M_PN  # 14 - M_VN
    # 15 - KF_inh # 16 - NTS_inh # 17 - SI
    b = np.zeros((num_nrns, num_nrns))
    # # positive weights
    b[0,
      1] = 0.3  #PreI -> EarlyI # Rubins (2009): (0.4)    Rubins (2011): (0.35)
    b[0, 4] = 0.6  #PreI -> RampI
    b[0, 12] = 0.4  # PreI -> M_HN
    b[2, 14] = 0.25  # PostI -> M_VN
    b[4, 13] = 0.6  # RampI -> M_HN
    b[4, 13] = 0.5  # RampI -> M_PN
    b[4, 14] = 0.3  # RampI -> M_VN
    b[5, 2] = 0.4  # Relay -> PostI
    b[5, 6] = 0.84  # Relay -> Sw1
    b[5, 7] = 0.77  # Relay -> Sw2
    b[5, 8] = 0.65  # Relay -> Sw3
    b[5, 9] = 0.4  # Relay -> KF_t
    b[5, 10] = 0.4  # Relay -> KF_p
    b[6, 12] = 0.5  # Sw1 -> M_HN
    b[6, 14] = 0.6  # Sw1 -> M_VN
    b[8, 1] = 0.2  # Sw3 -> EarlyI
    b[8, 2] = 0.5  # Sw3 -> PostI
    b[8, 3] = 0.6  # Sw3 -> AugE
    b[10, 2] = 0.75  # KF_p -> PostI
    b[10, 3] = 0.85  # KF_p -> AugE
    b[10, 8] = 0.5  # KF_p -> Sw3
    b[10, 14] = 0.38  # KF_p -> M_VN
    b[9, 11] = 1.4  # KF_t -> KF_relay
    b[17, 5] = 0.75  # SI -> Relay

    # negative weights
    b[1, 0] = -0.02  # EarlyI -> PreI #in Rubins: (0)    Rubins (2011): (0)
    b[1,
      2] = -0.3  # EarlyI -> PostI #in Rubins: (0.25)    Rubins (2011): (0.2)
    b[1,
      3] = -0.4  # EarlyI -> AugE #in Rubins: (0.35)    Rubins (2011): (0.25)
    # b[1,6] = -0.05  # EarlyI -> Sw1
    b[1, 4] = -0.15  # EarlyI1 -> RampI
    b[1, 10] = -0.3  # EarlyI1 -> KF_p

    b[2, 0] = -0.16  # PostI -> PreI #in Rubins: (0.3)    Rubins (2011): (0.8)
    b[2,
      1] = -0.35  # PostI -> EarlyI #in Rubins: (0.05)    Rubins (2011): (0.15)
    b[2, 3] = -0.35  # PostI -> AugE #in Rubins: (0.35)    Rubins (2011): (0.4)
    b[2, 4] = -0.67  # PostI -> RampI
    b[2, 6] = -0.06  # PostI -> Sw1
    b[2, 7] = -0.07  # PostI -> Sw2

    b[3,
      0] = -0.55  # 0.55 AugE -> PreI #in Rubins: (0.2)    Rubins (2011): (0.22)
    b[3,
      1] = -0.44  # AugE -> EarlyI #in Rubins: (0.35)    Rubins (2011): (0.08)
    b[3, 2] = -0.04  # AugE -> PostI #in Rubins: (0.1)    Rubins (2011): (0.0)
    b[3, 4] = -0.67  # AugE -> RampI
    b[3, 6] = -0.01  # AugE -> Sw1
    b[3, 7] = -0.02  # AugE -> Sw2

    b[5, 0] = -0.2  # Relay -> PreI
    b[5, 1] = -0.2  # Relay -> EarlyI

    b[6, 7] = -0.3 * x  # Sw1 -> Sw2
    b[7, 6] = -0.35 * x  # Sw2 -> Sw1

    b[11, 0] = -0.07  # KF_relay -> PreI
    b[11, 1] = -0.06  # KF_relay -> EarlyI
    b[11, 6] = -0.08  # KF_relay -> Sw1
    b[11, 7] = -0.08  # KF_relay -> Sw2

    b[15, 9] = -0.3 * y  # KF_inh -> KF_t
    b[15, 10] = -0.3 * y  # KF_inh -> KF_p
    b[16, 5] = -0.3 * x  # NTS_inh -> Relay
    b[16, 6] = -0.2 * x  # NTS_inh -> Sw1
    b[16, 7] = -0.2 * x  # NTS_inh -> Sw2
    b[16, 8] = -0.2 * x  # NTS_inh -> Sw3

    c = np.zeros((num_drives, num_nrns))
    # other
    c[0, 0] = 0.265  # To PreI
    c[0, 1] = 0.38  # To EarlyI
    c[0, 2] = 0.03  # To PostI
    c[0, 3] = 0.03  # To AugE
    c[0, 4] = 0.53  # To RampI
    c[0, 6] = 0.63  # To Sw1
    c[0, 7] = 0.74  # To Sw2
    c[0, 8] = 0.8  # To Sw3
    c[0, 9] = 0.8  # To KF_t
    c[0, 10] = 0.8  # To KF_p
    c[0, 15] = 0.3  # To KF_inh
    c[0, 16] = 0.3  # To NTS_inh

    b = b.tolist()
    c = c.tolist()

    params["description"] = ""
    params["b"] = b
    params["c"] = c
    data_path = str(get_project_root()) + "/data"
    json.dump(params,
              open(f'{data_path}/rCPG_swCPG.json', 'w', encoding='utf-8'),
              separators=(',', ':'),
              sort_keys=True,
              indent=4)
    return None
コード例 #5
0
    t = np.array(Network_model.t)
    signals = Network_model.firing_rate(V_array, Network_model.V_half,
                                        Network_model.slope).T
    return signals, t


def run_the_model_with_Relay_const(net, Relay_activity):

    for i in range(T_steps):
        # set activity of a relay neuron
        net.step()


if __name__ == '__main__':
    # sorting out folders
    data_folder = str(get_project_root()) + "/data"
    img_folder = str(get_project_root()) + "/img"
    save_img_folder = f"{img_folder}/num_experiments/varying_Relay"
    save_data_folder = f"{data_folder}/num_exp_runs/varying_Relay"
    create_dir_if_not_exist(save_img_folder)
    create_dir_if_not_exist(save_data_folder)

    # Specifying parameters of tre simulation
    dt = 0.75
    T_steps = int(30000 / dt)
    T_transient = int(10000 / dt)

    #Constructing a model
    default_neural_params = json.load(
        open(f'{data_folder}/params/default_neural_params.json', 'r+'))
    population_names = [
コード例 #6
0
        params = json.load(file)
        W = np.array(params["b"])
        drives = np.array(params["c"])
        dt = 0.75
        net = Network(populations, W, drives, dt, history_len=int(40000 / dt))
        # get rid of all transients
        net.run(int(15000 / dt))  # runs for 15 seconds
        # run for 15 more seconds
        net.run(int(15000 / dt))
        # set input to Relay neurons
        inp = np.zeros(net.N)
        inp[5] = 150
        net.set_input_current(inp)
        # run for 10 more seconds
        net.run(int(10000 / dt))
        net.set_input_current(np.zeros(net.N))
        # run for 15 more seconds
        net.run(int(15000 / dt))
        img_path = str(get_project_root()) + "/img"
        folder = "Model_02042020"
        create_dir_if_not_exist(f"{img_path}/{folder}")
        net.plot(
            show=False,
            save_to=f"{img_path}/{folder}/{get_postfix(inh_NTS, inh_KF)}.png")
        fig = plot_num_exp_traces(signals)
        folder_save_img_to = img_path + "/" + f"other_plots"
        fig.savefig(folder_save_img_to + "/" +
                    f"num_exp_{amp}_{stim_duration}" + ".png")
        plt.close(fig)

generate_params(1, 1)
コード例 #7
0
ファイル: swCPG.py プロジェクト: ptolmachev/rCPG_swCPG
def run_simulations(W, d, dt, amp, stim_start, durations, stoptime):
    data_folder = str(get_project_root()) + "/data"
    img_folder = f"{get_project_root()}/img"
    default_neural_params = json.load(
        open(f'{data_folder}/params/default_neural_params.json', 'r+'))
    population_names = ['Sw1', 'Sw2', 'Relay']

    Relay = NeuralPopulation("Relay", default_neural_params)
    Sw1 = NeuralPopulation("Sw1", default_neural_params)
    Sw2 = NeuralPopulation("Sw2", default_neural_params)
    Relay.tau_ad = 15000.0
    Sw1.tau_ad = 1000.0
    Sw2.tau_ad = 1000.0

    # populations dictionary
    populations = dict()
    for name in population_names:
        populations[name] = eval(name)
    N = len(population_names)

    drives = d
    for i in range(len(durations)):
        net = Network(populations,
                      W,
                      drives,
                      dt,
                      history_len=int(stoptime / dt))
        net.v = -100 + 100 * np.random.rand(len(population_names))
        inp = np.zeros(net.N)
        inp[population_names.index("Relay")] = amp

        net.run(int(stim_start / dt))
        # set an impuls input to "three" neuron

        net.set_input_current(inp)
        net.run(int((durations[i]) / dt))

        # run the network further
        net.set_input_current(np.zeros(net.N))
        net.run(int((stoptime - (stim_start + durations[i])) / dt))

        v = np.array(net.v_history)
        fr = net.firing_rate(v, v_half=-30, slope=4)
        fig, axes = plt.subplots(N, 1, figsize=(20, 10), sharex=True)
        colors = ['r', 'g', 'k', 'k']
        for j in range(N):
            axes[j].plot(net.t,
                         fr[:, j],
                         color=colors[j],
                         label=population_names[j],
                         linewidth=3)
            axes[j].grid(True)
            axes[j].legend(fontsize=24)
            axes[j].set_ylim([0, 1])
        plt.subplots_adjust(wspace=None, hspace=None)
        img_path = str(get_project_root()) + "/img"
        folder_save_img_to = img_path + "/" + f"other_plots/trigger"
        # fig.savefig(folder_save_img_to + "/" + f"trigger_{stim_start}_{amp}_{durations[i]}" + ".png")
        plt.show()

    return None
コード例 #8
0
def run_model(dt, t_start, t_end, amp, stoptime):
    default_neural_params = {
        'C': 20,
        'g_NaP': 0.0,
        'g_K': 5.0,
        'g_ad': 10.0,
        'g_l': 2.8,
        'g_synE': 10,
        'g_synI': 60,
        'g_synE_slow': 0,
        'E_Na': 50,
        'E_K': -85,
        'E_ad': -85,
        'E_l': -60,
        'E_synE': 0,
        'E_synI': -75,
        'V_half': -30,
        'slope': 4,
        'tau_ad': 2000,
        'K_ad': 0.9,
        'tau_NaP_max': 6000}

    population_names = ["PreI", "EarlyI", "PostI", "AugE", "RampI", "Relay", "Sw1", "Sw2", "Sw3", "KF_t", "KF_p",
                        "KF_r", "HN", "PN", "VN", "KF_inh", "NTS_inh", "SI"]
    # create populations
    # for name in population_names:
    #     exec(f"{name} = NeuralPopulation(\'{name}\', default_neural_params)")
    PreI = NeuralPopulation("PreI", default_neural_params)
    EarlyI = NeuralPopulation("EarlyI", default_neural_params)
    PostI = NeuralPopulation("PostI", default_neural_params)
    AugE = NeuralPopulation("AugE", default_neural_params)
    RampI = NeuralPopulation("RampI", default_neural_params)
    Relay = NeuralPopulation("Relay", default_neural_params)
    Sw1 = NeuralPopulation("Sw1", default_neural_params)
    Sw2 = NeuralPopulation("Sw2", default_neural_params)
    Sw3 = NeuralPopulation("Sw3", default_neural_params)
    KF_t = NeuralPopulation("KF_t", default_neural_params)
    KF_p = NeuralPopulation("KF_p", default_neural_params)
    KF_r= NeuralPopulation("KF_r", default_neural_params)
    HN = NeuralPopulation("HN", default_neural_params)
    PN = NeuralPopulation("PN", default_neural_params)
    VN = NeuralPopulation("VN", default_neural_params)
    KF_inh = NeuralPopulation("KF_inh", default_neural_params)
    NTS_inh = NeuralPopulation("NTS_inh", default_neural_params)
    SI = NeuralPopulation("SI", default_neural_params)

    # # modifications:
    # PreI.g_NaP = 5.0
    # PreI.g_ad = HN.g_ad = PN.g_ad = VN.g_ad = 0.0
    # HN.g_NaP = PN.g_NaP = VN.g_NaP = 0.0
    # Relay.tau_ad = 15000.0
    # PostI.tau_ad = 10000.0
    #modifications:
    PreI.g_NaP = 5.0
    PreI.g_ad = HN.g_ad = PN.g_ad = VN.g_ad = SI.g_ad =  0.0
    HN.g_NaP = PN.g_NaP = VN.g_NaP = SI.g_NaP = 0.0
    PostI.tau_ad = 15000.0
    Relay.tau_ad = 10000.0
    Sw1.tau_ad = 1000.0
    Sw2.tau_ad = 1000.0

    # populations dictionary
    populations = dict()
    for name in population_names:
        populations[name] = eval(name)

    data_path = str(get_project_root()) + "/data"
    file = open(f"{data_path}/rCPG_swCPG.json", "rb+")
    params = json.load(file)
    W = np.array(params["b"])
    drives = np.array(params["c"])
    net = Network(populations, W, drives, dt, history_len=int(stoptime / dt))
    # if for some reason the running has failed try once again
    net.run(int(t_start / dt))
    # set input to Relay neurons
    inp = np.zeros(net.N)
    inp[17] = amp # SI neurons
    net.set_input_current(inp)
    # run for 10 more seconds
    net.run(int((t_end - t_start) / dt))
    net.set_input_current(np.zeros(net.N))
    # run til stoptime
    net.run(int((stoptime - (t_end - t_start) - t_start) / dt))
    # img_path = str(get_project_root()) + "/img"
    # net.plot(show=False, save_to=f"{img_path}/{folder_save_img_to}/single_trial_{amp}.png")
    V_array = net.v_history
    t = np.array(net.t)
    signals = net.firing_rate(V_array, net.V_half, net.slope).T
    return signals, t