""" Loading CSV data into TensorFlow: https://www.tensorflow.org/tutorials/load_data/numpy """ import pandas as pd import numpy as np import os import tensorflow as tf from utils.handler_data_path import get_data_path import pdb print("TensorFlow Version: {}".format(tf.__version__)) data_dir = os.path.join(get_data_path(), "santander_customer_transaction_prediction") print('[+] data_dir={}'.format(data_dir)) train_file_path = os.path.join(data_dir, "train.csv") df = pd.read_csv(train_file_path) split_index = int(len(df) * 0.75) train_df = df[:split_index] validation_df = df[split_index:] train_examples = train_df[['var_{}'.format(i) for i in range(200)]].to_numpy() validation_examples = validation_df[['var_{}'.format(i) for i in range(200)]].to_numpy() train_labels = train_df['target']
import os import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt from IPython.display import clear_output from six.moves import urllib import tensorflow.compat.v2.feature_column as fc import tensorflow as tf from utils.handler_data_path import get_data_path data_dir = os.path.join(get_data_path(), 'titanic') train_path = os.path.join(data_dir, 'train.csv') eval_path = os.path.join(data_dir, 'test.csv') dftrain = pd.read_csv(train_path) dfeval = pd.read_csv(eval_path) y_train = dftrain.pop('Survived') print(dftrain.head()) print(dftrain.describe()) print(dftrain.shape[0], dfeval.shape[0]) CATEGORICAL_COLUMNS = [ 'sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town',
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import numpy as np import matplotlib.pyplot as plt import pdb from utils.handler_data_path import get_data_path print("TensorFlow Version: {}".format(tf.__version__)) AUTOTUNE = tf.data.experimental.AUTOTUNE data_dir = os.path.join(get_data_path(), "leaf-classification") train_dir = os.path.join(data_dir, 'train_images') validation_dir = os.path.join(data_dir, 'validation_images') CLASS_NAMES = [x for x in sorted(os.listdir(str(train_dir))) if x[0] != '.'] CLASS_NAMES = np.array(CLASS_NAMES) print("Number of classes: {}".format(len(CLASS_NAMES))) image_count = 0 for class_ in [x for x in os.listdir(train_dir) if x[0] != '.']: for image_ in os.listdir(os.path.join(train_dir, class_)): image_count += 1 print("Image count:", image_count) BATCH_SIZE = 32 IMG_HEIGHT = 224