コード例 #1
0
    def result_to_csv(self):
        column_header = ['Class', 'Gauge', 'SP_Tim_10', 'SP_Dur_10', 'SP_Mag_10', 'SP_ROC_10', 'SP_Tim_50', 'SP_Dur_50', 'SP_Mag_50', 'SP_ROC_50', 'SP_Tim_90', 'SP_Dur_90', 'SP_Mag_90', 'SP_ROC_90']
        result_matrix = []
        result_matrix.append(self.gauge_class_array)
        result_matrix.append(self.gauge_number_array)

        for percent in self.percentilles:
            result_matrix.append(self.spring_timings[percent])
            result_matrix.append(self.spring_durations[percent])
            result_matrix.append(self.spring_magnitudes[percent])
            result_matrix.append(self.spring_rocs[percent])

        result_matrix = sort_matrix(result_matrix, 0)
        result_matrix = insert_column_header(result_matrix, column_header)

        np.savetxt("post_processedFiles/spring_transition_result_matrix.csv", result_matrix, delimiter=",", fmt="%s")
        if self.plot:
            smart_plot(result_matrix)

        """nonP plots"""
        SP_Tim = []
        SP_Mag = []
        SP_Dur = []
        SP_ROC = []

        for class_id in range(1,10):
            SP_Tim.append(self.metrics['SP_Tim'][class_id])
            SP_Mag.append(self.metrics['SP_Mag'][class_id])
            SP_Dur.append(self.metrics['SP_Dur'][class_id])
            SP_ROC.append(self.metrics['SP_ROC'][class_id])

        combined = {'SP_Tim': SP_Tim, 'SP_Mag': SP_Mag, 'SP_Dur': SP_Dur, 'SP_ROC': SP_ROC}
        if self.plot:
            nonP_box_plot(combined)
コード例 #2
0
    def result_to_csv(self):
        column_header = [
            'Class', 'Gauge', 'SU_Tim_10', 'SU_BFL_Mag_10_10',
            'SU_BFL_Mag_50_10', 'SU_BFL_Dur_Flush_10', 'SU_BFL_Dur_Wet_10',
            'SU_BFL_NoFlow_10', 'SU_Tim_50', 'SU_BFL_Mag_10_50',
            'SU_BFL_Mag_50_50', 'SU_BFL_Dur_Flush_50', 'SU_BFL_Dur_Wet_50',
            'SU_BFL_NoFlow_50', 'SU_Tim_90', 'SU_BFL_Mag_10_90',
            'SU_BFL_Mag_50_90', 'SU_BFL_Dur_Flush_90', 'SU_BFL_Dur_Wet_90',
            'SU_BFL_NoFlow_90'
        ]
        result_matrix = []
        result_matrix.append(self.gauge_class_array)
        result_matrix.append(self.gauge_number_array)

        for percentile in self.percentilles:
            result_matrix.append(self.summer_timings[percentile])
            result_matrix.append(self.summer_10_magnitudes[percentile])
            result_matrix.append(self.summer_50_magnitudes[percentile])
            result_matrix.append(self.summer_flush_durations[percentile])
            result_matrix.append(self.summer_wet_durations[percentile])
            result_matrix.append(self.summer_no_flow_counts[percentile])

        result_matrix = sort_matrix(result_matrix, 0)
        result_matrix = insert_column_header(result_matrix, column_header)

        np.savetxt("post_processedFiles/summer_baseflow_result_matrix.csv",
                   result_matrix,
                   delimiter=",",
                   fmt="%s")
        if self.plot:
            smart_plot(result_matrix)
        """nonP plots"""
        SU_BFL_Tim = []
        SU_BFL_Mag_10 = []
        SU_BFL_Mag_50 = []
        SU_BFL_Dur_Fl = []
        SU_BFL_Dur_Wet = []
        SU_BFL_No_Flow = []

        for class_id in range(1, 10):
            SU_BFL_Tim.append(self.metrics['SU_BFL_Tim'][class_id])
            SU_BFL_Mag_10.append(self.metrics['SU_BFL_Mag_10'][class_id])
            SU_BFL_Mag_50.append(self.metrics['SU_BFL_Mag_50'][class_id])
            SU_BFL_Dur_Fl.append(self.metrics['SU_BFL_Dur_Fl'][class_id])
            SU_BFL_Dur_Wet.append(self.metrics['SU_BFL_Dur_Wet'][class_id])
            SU_BFL_No_Flow.append(self.metrics['SU_BFL_No_Flow'][class_id])

        combined = {
            'SU_BFL_Tim': SU_BFL_Tim,
            'SU_BFL_Mag_10': SU_BFL_Mag_10,
            'SU_BFL_Mag_50': SU_BFL_Mag_50,
            'SU_BFL_Dur_Fl, ': SU_BFL_Dur_Fl,
            'SU_BFL_Dur_Wet': SU_BFL_Dur_Wet,
            'SU_BFL_No_Flow': SU_BFL_No_Flow
        }
        if self.plot:
            nonP_box_plot(combined)
コード例 #3
0
ファイル: FallFlush.py プロジェクト: leogoesger/func-flow
    def result_to_csv(self):
        column_header = [
            'Class', 'Gauge', 'FAFL_Tim_10%', 'FAFL_Mag_10%', 'FAFL_Dur_10%',
            'FA_Tim_Wet_10%', 'FAFL_Tim_50%', 'FAFL_Mag_50%', 'FAFL_Dur_50%',
            'FA_Tim_Wet_50%', 'FAFL_Tim_90%', 'FAFL_Mag_90%', 'FAFL_Dur_90%',
            'FA_Tim_Wet_90%'
        ]
        result_matrix = []
        result_matrix.append(self.gauge_class_array)
        result_matrix.append(self.gauge_number_array)

        for percent in self.percentilles:
            result_matrix.append(self.fall_timings[percent])
            result_matrix.append(self.fall_magnitudes[percent])
            result_matrix.append(self.fall_durations[percent])
            result_matrix.append(self.fall_wet_timings[percent])

        result_matrix = sort_matrix(result_matrix, 0)
        result_matrix = insert_column_header(result_matrix, column_header)

        np.savetxt("post_processedFiles/fall_flush_result_matrix.csv",
                   result_matrix,
                   delimiter=",",
                   fmt="%s")
        if self.plot:
            smart_plot(result_matrix)
        """nonP plots"""
        FAFL_Tim = []
        FAFL_Mag = []
        FAFL_Tim_Wet = []
        FAFL_Dur = []

        for class_id in range(1, 10):
            FAFL_Tim.append(self.metrics['FAFL_Tim'][class_id])
            FAFL_Mag.append(self.metrics['FAFL_Mag'][class_id])
            FAFL_Tim_Wet.append(self.metrics['FAFL_Tim_Wet'][class_id])
            FAFL_Dur.append(self.metrics['FAFL_Dur'][class_id])

        combined = {
            'FAFL_Tim': FAFL_Tim,
            'FAFL_Mag': FAFL_Mag,
            'FAFL_Tim_Wet': FAFL_Tim_Wet,
            'FAFL_Dur': FAFL_Dur
        }
        if self.plot:
            nonP_box_plot(combined)
コード例 #4
0
    def result_to_csv(self):
        column_header = [
            'Class', 'Gauge', 'Avg_10%', 'Std_10%', 'CV_10%', 'Avg_50%',
            'Std_50%', 'CV_50%', 'Avg_90%', 'Std_90%', 'CV_90%'
        ]
        result_matrix = []
        result_matrix.append(self.gauge_class_array)
        result_matrix.append(self.gauge_number_array)

        for percent in self.percentilles:
            result_matrix.append(self.average_annual_flows[percent])
            result_matrix.append(self.standard_deviations[percent])
            result_matrix.append(self.coefficient_variations[percent])

        result_matrix = sort_matrix(result_matrix, 0)
        result_matrix = insert_column_header(result_matrix, column_header)

        np.savetxt("post_processedFiles/all_year_result_matrix.csv",
                   result_matrix,
                   delimiter=",",
                   fmt="%s")

        if self.plot:
            smart_plot(result_matrix)
        """nonP plots"""
        Avg = []
        Std = []
        CV = []

        for class_id in range(1, 10):
            Avg.append(self.metrics['Avg'][class_id])
            Std.append(self.metrics['Std'][class_id])
            CV.append(self.metrics['CV'][class_id])

        combined = {'Avg': Avg, 'Std': Std, 'CV': CV}
        if self.plot:
            nonP_box_plot(combined)
コード例 #5
0
    def result_to_csv(self):
        column_header = ['Class', 'Gauge #']
        result_matrix = []
        result_matrix.append(self.gauge_class_array)
        result_matrix.append(self.gauge_number_array)

        # only output percentiles 10, 20, 50
        for percent in [50, 20, 10]:
            for percentille in self.percentilles:
                # Exceedance percentiles translated to recurrence intervals for output: exc_50 -> peak_2, exc_20 -> peak_5, exc_10 -> peak_10
                if percent == 50:
                    name = 2
                if percent == 20:
                    name = 5
                if percent == 10:
                    name = 10
                # column_header.append('Peak_Tim_{}_{}'.format(name, percentille))
                column_header.append('Peak_Dur_{}_{}'.format(
                    name, percentille))
                column_header.append('Peak_Fre_{}_{}'.format(
                    name, percentille))
                column_header.append('Peak{}_{}'.format(name, percentille))
                # result_matrix.append(self.timing[percent][percentille])
                result_matrix.append(self.duration[percent][percentille])
                result_matrix.append(self.freq[percent][percentille])
                result_matrix.append(self.mag[percent][percentille])

        result_matrix = sort_matrix(result_matrix, 0)
        result_matrix = insert_column_header(result_matrix, column_header)

        np.savetxt("post_processedFiles/winter_highflow_result_matrix.csv",
                   result_matrix,
                   delimiter=",",
                   fmt="%s")

        if self.plot:
            smart_plot(result_matrix)
        """nonP plots"""
        WIN_Tim_2 = []
        WIN_Dur_2 = []
        WIN_Fre_2 = []
        WIN_Mag_2 = []
        WIN_Tim_5 = []
        WIN_Dur_5 = []
        WIN_Fre_5 = []
        WIN_Mag_5 = []
        WIN_Tim_10 = []
        WIN_Dur_10 = []
        WIN_Fre_10 = []
        WIN_Mag_10 = []
        WIN_Tim_20 = []
        WIN_Dur_20 = []
        WIN_Fre_20 = []
        WIN_Mag_20 = []
        WIN_Tim_50 = []
        WIN_Dur_50 = []
        WIN_Fre_50 = []
        WIN_Mag_50 = []

        for class_id in range(1, 10):
            WIN_Tim_2.append(self.metrics['WIN_Tim_2'][class_id])
            WIN_Dur_2.append(self.metrics['WIN_Dur_2'][class_id])
            WIN_Fre_2.append(self.metrics['WIN_Fre_2'][class_id])
            WIN_Fre_2.append(self.metrics['WIN_Mag_2'][class_id])
            WIN_Tim_5.append(self.metrics['WIN_Tim_5'][class_id])
            WIN_Dur_5.append(self.metrics['WIN_Dur_5'][class_id])
            WIN_Fre_5.append(self.metrics['WIN_Fre_5'][class_id])
            WIN_Fre_5.append(self.metrics['WIN_Mag_5'][class_id])
            WIN_Tim_10.append(self.metrics['WIN_Tim_10'][class_id])
            WIN_Dur_10.append(self.metrics['WIN_Dur_10'][class_id])
            WIN_Fre_10.append(self.metrics['WIN_Fre_10'][class_id])
            WIN_Fre_10.append(self.metrics['WIN_Mag_10'][class_id])
            WIN_Tim_20.append(self.metrics['WIN_Tim_20'][class_id])
            WIN_Dur_20.append(self.metrics['WIN_Dur_20'][class_id])
            WIN_Fre_20.append(self.metrics['WIN_Fre_20'][class_id])
            WIN_Fre_20.append(self.metrics['WIN_Mag_20'][class_id])
            WIN_Tim_50.append(self.metrics['WIN_Tim_50'][class_id])
            WIN_Dur_50.append(self.metrics['WIN_Dur_50'][class_id])
            WIN_Fre_50.append(self.metrics['WIN_Fre_50'][class_id])
            WIN_Fre_50.append(self.metrics['WIN_Mag_50'][class_id])

        combined = {
            'WIN_Tim_2': WIN_Tim_2,
            'WIN_Dur_2': WIN_Dur_2,
            'WIN_Fre_2': WIN_Fre_2,
            'WIN_Mag_2': WIN_Mag_2,
            'WIN_Tim_5': WIN_Tim_5,
            'WIN_Dur_5': WIN_Dur_5,
            'WIN_Fre_5': WIN_Fre_5,
            'WIN_Mag_5': WIN_Mag_5,
            'WIN_Tim_10': WIN_Tim_10,
            'WIN_Dur_10': WIN_Dur_10,
            'WIN_Fre_10': WIN_Fre_10,
            'WIN_Mag_10': WIN_Mag_10,
            'WIN_Tim_20': WIN_Tim_20,
            'WIN_Dur_20': WIN_Dur_20,
            'WIN_Fre_20': WIN_Fre_20,
            'WIN_Mag_20': WIN_Mag_20,
            'WIN_Tim_50': WIN_Tim_50,
            'WIN_Dur_50': WIN_Dur_50,
            'WIN_Fre_50': WIN_Fre_50,
            'WIN_Mag_50': WIN_Mag_50
        }

        if self.plot:
            nonP_box_plot(combined)
コード例 #6
0
    def result_to_csv(self):
        column_header = ['Class', 'Gauge #']
        result_matrix = []
        result_matrix.append(self.gauge_class_array)
        result_matrix.append(self.gauge_number_array)

        for percent in self.exceedance_percent:
            for percentille in self.percentilles:
                column_header.append('WIN_Tim_{}_{}'.format(
                    percent, percentille))
                column_header.append('WIN_Dur_{}_{}'.format(
                    percent, percentille))
                column_header.append('WIN_Fre_{}_{}'.format(
                    percent, percentille))
                column_header.append('WIN_Mag_{}_{}'.format(
                    percent, percentille))

                result_matrix.append(self.timing[percent][percentille])
                result_matrix.append(self.duration[percent][percentille])
                result_matrix.append(self.freq[percent][percentille])
                result_matrix.append(self.mag[percent][percentille])

        result_matrix = sort_matrix(result_matrix, 0)
        result_matrix = insert_column_header(result_matrix, column_header)

        np.savetxt("post_processedFiles/winter_highflow_result_matrix.csv",
                   result_matrix,
                   delimiter=",",
                   fmt="%s")

        if self.plot:
            smart_plot(result_matrix)
        """nonP plots"""
        WIN_Tim_2 = []
        WIN_Dur_2 = []
        WIN_Fre_2 = []
        WIN_Mag_2 = []
        WIN_Tim_5 = []
        WIN_Dur_5 = []
        WIN_Fre_5 = []
        WIN_Mag_5 = []
        WIN_Tim_10 = []
        WIN_Dur_10 = []
        WIN_Fre_10 = []
        WIN_Mag_10 = []
        WIN_Tim_20 = []
        WIN_Dur_20 = []
        WIN_Fre_20 = []
        WIN_Mag_20 = []
        WIN_Tim_50 = []
        WIN_Dur_50 = []
        WIN_Fre_50 = []
        WIN_Mag_50 = []

        for class_id in range(1, 10):
            WIN_Tim_2.append(self.metrics['WIN_Tim_2'][class_id])
            WIN_Dur_2.append(self.metrics['WIN_Dur_2'][class_id])
            WIN_Fre_2.append(self.metrics['WIN_Fre_2'][class_id])
            WIN_Fre_2.append(self.metrics['WIN_Mag_2'][class_id])
            WIN_Tim_5.append(self.metrics['WIN_Tim_5'][class_id])
            WIN_Dur_5.append(self.metrics['WIN_Dur_5'][class_id])
            WIN_Fre_5.append(self.metrics['WIN_Fre_5'][class_id])
            WIN_Fre_5.append(self.metrics['WIN_Mag_5'][class_id])
            WIN_Tim_10.append(self.metrics['WIN_Tim_10'][class_id])
            WIN_Dur_10.append(self.metrics['WIN_Dur_10'][class_id])
            WIN_Fre_10.append(self.metrics['WIN_Fre_10'][class_id])
            WIN_Fre_10.append(self.metrics['WIN_Mag_10'][class_id])
            WIN_Tim_20.append(self.metrics['WIN_Tim_20'][class_id])
            WIN_Dur_20.append(self.metrics['WIN_Dur_20'][class_id])
            WIN_Fre_20.append(self.metrics['WIN_Fre_20'][class_id])
            WIN_Fre_20.append(self.metrics['WIN_Mag_20'][class_id])
            WIN_Tim_50.append(self.metrics['WIN_Tim_50'][class_id])
            WIN_Dur_50.append(self.metrics['WIN_Dur_50'][class_id])
            WIN_Fre_50.append(self.metrics['WIN_Fre_50'][class_id])
            WIN_Fre_50.append(self.metrics['WIN_Mag_50'][class_id])

        combined = {
            'WIN_Tim_2': WIN_Tim_2,
            'WIN_Dur_2': WIN_Dur_2,
            'WIN_Fre_2': WIN_Fre_2,
            'WIN_Mag_2': WIN_Mag_2,
            'WIN_Tim_5': WIN_Tim_5,
            'WIN_Dur_5': WIN_Dur_5,
            'WIN_Fre_5': WIN_Fre_5,
            'WIN_Mag_5': WIN_Mag_5,
            'WIN_Tim_10': WIN_Tim_10,
            'WIN_Dur_10': WIN_Dur_10,
            'WIN_Fre_10': WIN_Fre_10,
            'WIN_Mag_10': WIN_Mag_10,
            'WIN_Tim_20': WIN_Tim_20,
            'WIN_Dur_20': WIN_Dur_20,
            'WIN_Fre_20': WIN_Fre_20,
            'WIN_Mag_20': WIN_Mag_20,
            'WIN_Tim_50': WIN_Tim_50,
            'WIN_Dur_50': WIN_Dur_50,
            'WIN_Fre_50': WIN_Fre_50,
            'WIN_Mag_50': WIN_Mag_50
        }

        if self.plot:
            nonP_box_plot(combined)