def worker_super_resolution_one(image, new_heigth=None, new_width=None, save_filename="huey_SR_test"): current_heigth, current_width = image.shape[:2] resized_image = image if new_heigth is not None: if new_width is not None: resized_image = cv2.resize(image, (new_width, new_heigth)) else: resized_image = cv2.resize(image, (current_width, new_heigth)) else: if new_width is not None: resized_image = cv2.resize(image, (new_width, current_heigth)) logging.info("Image has been resized from {} to {}".format( image.shape, resized_image.shape)) processor = ImageProcessor() model = get_model_by_name("super_resolution_model") new_image = processor.process_image(image=resized_image, model=model, overlay=20) cv2.imwrite("./processed_images/{}.png".format(save_filename), new_image) return new_image
def worker_general(image, model_name, save_filename="bad_filename"): model = get_model_by_name(model_name) processor = ImageProcessor() new_image = processor.process_image(image=image, model=model, overlay=20) cv2.imwrite("./processed_images/{}.png".format(save_filename), new_image) return new_image
def test_image_processing(self): test_image = cv2.imread("./test_data/test_image.jpg")[:224, :224, :] proc = ImageProcessor() name = "super_resolution_model" with open(join(ROOT_DIR, 'GAN/Models/{}.json'.format(name)), 'r') as json_file: model = model_from_json(json_file.read()) model.load_weights(join(ROOT_DIR, "GAN/Models/{}.h5".format(name))) model._make_predict_function() result = proc.process_image(image=test_image, model=model, overlay=20) processed_test_image = cv2.imread( "./test_data/test_image_processed.png") self.assertListEqual(list(result[100][100]), list(processed_test_image[100][100]))
'r') as json_file: loaded_model = model_from_json(json_file.read()) loaded_model.load_weights( "E:/Licenta/Licenta/GAN//Models/super_resolution_model.h5") # loaded_model.summary() global model_graph model_graph = tf.get_default_graph() # Test on image processor = ImageProcessor() image = cv2.imread("E:/AiDatasets/Licenta/Test/data/test1.jpg") cv2.imwrite("E:/AiDatasets/Licenta/Test/results/test1_3_original.jpg", image) img_h, img_w, _ = image.shape image = cv2.resize(image, (img_w // 4, img_h // 4)) image = cv2.resize(image, (img_w, img_h)) cv2.imwrite("E:/AiDatasets/Licenta/Test/results/test1_1_downRes.jpg", image) new_image = processor.process_image(image=image, model=loaded_model, model_graph=model_graph, overlay=0) cv2.imwrite("E:/AiDatasets/Licenta/Test/results/test1_2_generated.jpg", new_image)