def test_cropped_image(self, full_image): image_size_np = [1] + list( reversed(self.image_size )) if self.data_format == 'channels_first' else list( reversed(self.image_size)) + [1] labels_size_np = [self.num_labels] + list( reversed(self.image_size )) if self.data_format == 'channels_first' else list( reversed(self.image_size)) + [self.num_labels] predictions_full_size_np = [self.num_labels] + list( full_image.shape[1:] ) if self.data_format == 'channels_first' else list( full_image.shape[:-1]) + [self.num_labels] cropped_inc = [ 0 ] + self.cropped_inc if self.data_format == 'channels_first' else self.cropped_inc + [ 0 ] image_tiler = ImageTiler(full_image.shape, image_size_np, cropped_inc, True, -1) prediction_tiler = ImageTiler(predictions_full_size_np, labels_size_np, cropped_inc, True, 0) for image_tiler, prediction_tiler in zip(image_tiler, prediction_tiler): current_image = image_tiler.get_current_data(full_image) feed_dict = {self.data_val: np.expand_dims(current_image, axis=0)} run_tuple = self.sess.run((self.prediction_val, ), feed_dict=feed_dict) prediction = np.squeeze(run_tuple[0], axis=0) image_tiler.set_current_data(current_image) prediction_tiler.set_current_data(prediction) return prediction_tiler.output_image
def test_cropped_image(self, dataset_entry, return_all_intermediate_embeddings=False): generators = dataset_entry['generators'] full_image = generators['image'] # initialize sizes based on data_format fetches = self.embeddings_cropped_val if self.data_format == 'channels_first': image_size_np = [1, self.num_frames] + list( reversed(self.image_size)) full_image_size_np = list(full_image.shape) embeddings_size_np = [self.num_embeddings, self.num_frames] + list( reversed(self.image_size)) full_embeddings_size_np = [self.num_embeddings] + list( full_image.shape[1:]) inc = [0, 0] + list(reversed(self.tiled_increment)) else: image_size_np = list(reversed(self.image_size)) + [1] full_image_size_np = list(full_image.shape) embeddings_size_np = list(reversed( self.image_size)) + [self.num_embeddings] full_embeddings_size_np = list( full_image.shape[0:2]) + [self.num_embeddings] inc = list(reversed(self.tiled_increment)) + [0] # initialize on image tiler for the input and a list of image tilers for the embeddings image_tiler = ImageTiler(full_image_size_np, image_size_np, inc, True, -1) embeddings_tilers = tuple([ ImageTiler(full_embeddings_size_np, embeddings_size_np, inc, True, -1) for _ in range(len(self.embeddings_cropped_val)) ]) all_intermediate_embeddings = [] for state_index, all_tilers in enumerate( zip(*((image_tiler, ) + embeddings_tilers))): image_tiler = all_tilers[0] embeddings_tilers = all_tilers[1:] current_image = image_tiler.get_current_data(full_image) feed_dict = {self.data_val: np.expand_dims(current_image, axis=0)} run_tuple = self.sess.run(fetches, feed_dict) image_tiler.set_current_data(current_image) for i, embeddings_tiler in enumerate(embeddings_tilers): embeddings = np.squeeze(run_tuple[i], axis=0) if return_all_intermediate_embeddings and i == len( embeddings_tilers) - 1: all_intermediate_embeddings.append(embeddings) embeddings_tiler.set_current_data(embeddings) embeddings = [ embeddings_tiler.output_image for embeddings_tiler in embeddings_tilers ] if return_all_intermediate_embeddings: return embeddings, all_intermediate_embeddings else: return embeddings
def test_cropped_image(self, dataset_entry): """ Perform inference on a dataset_entry with the validation network. Performs cropped prediction and merges outputs as maxima. :param dataset_entry: A dataset entry from the dataset. :return: input image (np.array), target heatmaps (np.array), predicted heatmaps, transformation (sitk.Transform) """ generators = dataset_entry['generators'] transformations = dataset_entry['transformations'] transformation = transformations['image'] image_size_np = [1] + list(reversed(self.image_size)) labels_size_np = [self.num_landmarks] + list(reversed(self.image_size)) full_image = generators['image'] landmarks = generators['landmarks'] image_tiler = ImageTiler(full_image.shape, image_size_np, self.cropped_inc, True, -1) landmark_tiler = LandmarkTiler(full_image.shape, image_size_np, self.cropped_inc) prediction_tiler = ImageTiler( (self.num_landmarks, ) + full_image.shape[1:], labels_size_np, self.cropped_inc, True, 0) for image_tiler, landmark_tiler, prediction_tiler in zip( image_tiler, landmark_tiler, prediction_tiler): current_image = image_tiler.get_current_data(full_image) current_landmarks = landmark_tiler.get_current_data(landmarks) if self.has_validation_groundtruth: feed_dict = { self.data_val: np.expand_dims(current_image, axis=0), self.target_landmarks_val: np.expand_dims(current_landmarks, axis=0) } run_tuple = self.sess.run( (self.prediction_val, self.loss_val) + self.val_loss_aggregator.get_update_ops(), feed_dict=feed_dict) else: feed_dict = { self.data_val: np.expand_dims(current_image, axis=0) } run_tuple = self.sess.run((self.prediction_val, ), feed_dict=feed_dict) prediction = np.squeeze(run_tuple[0], axis=0) image_tiler.set_current_data(current_image) prediction_tiler.set_current_data(prediction) return image_tiler.output_image, prediction_tiler.output_image, transformation
def test_cropped_image(self, dataset_entry): """ Perform inference on a dataset_entry with the validation network. Performs cropped prediction and merges outputs as maxima. :param dataset_entry: A dataset entry from the dataset. :return: input image (np.array), target heatmaps (np.array), predicted heatmaps, transformation (sitk.Transform) """ generators = dataset_entry['generators'] transformations = dataset_entry['transformations'] transformation = transformations['image'] full_image = generators['image'] if self.has_validation_groundtruth: landmarks = generators['landmarks'] image_size_for_tilers = np.minimum(full_image.shape[1:], list(reversed(self.max_image_size_for_cropped_test))).tolist() image_size_np = [1] + image_size_for_tilers labels_size_np = [self.num_landmarks] + image_size_for_tilers image_tiler = ImageTiler(full_image.shape, image_size_np, self.cropped_inc, True, -1) landmark_tiler = LandmarkTiler(full_image.shape, image_size_np, self.cropped_inc) prediction_tiler = ImageTiler((self.num_landmarks,) + full_image.shape[1:], labels_size_np, self.cropped_inc, True, -np.inf) prediction_local_tiler = ImageTiler((self.num_landmarks,) + full_image.shape[1:], labels_size_np, self.cropped_inc, True, -np.inf) prediction_spatial_tiler = ImageTiler((self.num_landmarks,) + full_image.shape[1:], labels_size_np, self.cropped_inc, True, -np.inf) for image_tiler, landmark_tiler, prediction_tiler, prediction_local_tiler, prediction_spatial_tiler in zip(image_tiler, landmark_tiler, prediction_tiler, prediction_local_tiler, prediction_spatial_tiler): current_image = image_tiler.get_current_data(full_image) if self.has_validation_groundtruth: current_landmarks = landmark_tiler.get_current_data(landmarks) (prediction, prediction_local, prediction_spatial), losses = self.call_model_and_loss(np.expand_dims(current_image, axis=0), np.expand_dims(current_landmarks, axis=0), training=False) self.loss_metric_logger_val.update_metrics(losses) else: prediction, prediction_local, prediction_spatial = self.model(np.expand_dims(current_image, axis=0), training=False) image_tiler.set_current_data(current_image) prediction_tiler.set_current_data(np.squeeze(prediction, axis=0)) prediction_local_tiler.set_current_data(np.squeeze(prediction_local, axis=0)) prediction_spatial_tiler.set_current_data(np.squeeze(prediction_spatial, axis=0)) return image_tiler.output_image, prediction_tiler.output_image, prediction_local_tiler.output_image, prediction_spatial_tiler.output_image, transformation
def test_cropped_image(self, dataset_entry): generators = dataset_entry['generators'] transformations = dataset_entry['transformations'] heatmap_transform = transformations['image'] image_size_np = [1] + list(reversed(self.image_size)) heatmap_size_np = [self.num_landmarks] + list(reversed( self.image_size)) full_image = generators['image'] landmarks = generators['landmarks'] image_tiler = ImageTiler(full_image.shape, image_size_np, self.cropped_inc, True, -1) landmark_tiler = LandmarkTiler(full_image.shape, image_size_np, self.cropped_inc) heatmap_tiler = ImageTiler( (self.num_landmarks, ) + full_image.shape[1:], heatmap_size_np, self.cropped_inc, True, 0) for image_tiler, landmark_tiler, heatmap_tiler in zip( image_tiler, landmark_tiler, heatmap_tiler): current_image = image_tiler.get_current_data(full_image) current_landmarks = landmark_tiler.get_current_data(landmarks) feed_dict = { self.image_val: np.expand_dims(current_image, axis=0), self.target_landmarks_val: np.expand_dims(current_landmarks, axis=0) } run_tuple = self.sess.run( (self.heatmaps_val, self.target_heatmaps_val, self.loss_val) + self.val_loss_aggregator.get_update_ops(), feed_dict) prediction = np.squeeze(run_tuple[0], axis=0) image_tiler.set_current_data(current_image) heatmap_tiler.set_current_data(prediction) return image_tiler.output_image, heatmap_tiler.output_image, heatmap_transform
def test_cropped_image(self, dataset_entry, current_lstm_states, return_all_intermediate_embeddings=False): """ Tests the whole image by cropping the input image. :param dataset_entry: The dataset entry. :param current_lstm_states: The current lstm states per tile. :param return_all_intermediate_embeddings: If true, return embeddings for all tiles. :return: merged embeddings, (list of all intermediate embeddings), list of next lstm states per tile """ generators = dataset_entry['generators'] full_image = generators['image'] # initialize sizes based on data_format fetches = self.embeddings_cropped_val + self.lstm_output_states_cropped_val if self.data_format == 'channels_first': image_size_np = [1] + list(reversed(self.image_size)) full_image_size_np = list(full_image.shape) embeddings_size_np = [self.num_embeddings] + list( reversed(self.image_size)) full_embeddings_size_np = [self.num_embeddings] + list( full_image.shape[1:]) inc = [0] + list(reversed(self.tiled_increment)) else: image_size_np = list(reversed(self.image_size)) + [1] full_image_size_np = list(full_image.shape) embeddings_size_np = list(reversed( self.image_size)) + [self.num_embeddings] full_embeddings_size_np = list( full_image.shape[0:2]) + [self.num_embeddings] inc = list(reversed(self.tiled_increment)) + [0] # initialize on image tiler for the input and a list of image tilers for the embeddings image_tiler = ImageTiler(full_image_size_np, image_size_np, inc, True, -1) embeddings_tilers = tuple([ ImageTiler(full_embeddings_size_np, embeddings_size_np, inc, True, -1) for _ in range(len(self.embeddings_cropped_val)) ]) next_lstm_states = [] all_intermediate_embeddings = [] for state_index, all_tilers in enumerate( zip(*((image_tiler, ) + embeddings_tilers))): image_tiler = all_tilers[0] embeddings_tilers = all_tilers[1:] current_image = image_tiler.get_current_data(full_image) feed_dict = { self.data_cropped_val: np.expand_dims(current_image, axis=0) } if len(current_lstm_states) > 0: for i in range(len(self.lstm_input_states_cropped_val)): feed_dict[self.lstm_input_states_cropped_val[ i]] = current_lstm_states[state_index][i] run_tuple = self.sess.run(fetches, feed_dict) image_tiler.set_current_data(current_image) for i, embeddings_tiler in enumerate(embeddings_tilers): embeddings = np.squeeze(run_tuple[i], axis=0) if return_all_intermediate_embeddings and i == len( embeddings_tilers) - 1: all_intermediate_embeddings.append(embeddings) embeddings_tiler.set_current_data(embeddings) current_next_lstm_states = run_tuple[ len(self.embeddings_cropped_val ):len(self.embeddings_cropped_val) + len(self.lstm_output_states_cropped_val)] next_lstm_states.append(current_next_lstm_states) embeddings = [ embeddings_tiler.output_image for embeddings_tiler in embeddings_tilers ] if return_all_intermediate_embeddings: return embeddings, all_intermediate_embeddings, next_lstm_states else: return embeddings, next_lstm_states
def test_cropped_image(self, dataset_entry): """ Perform inference on a dataset_entry with the validation network. Performs cropped prediction and merges outputs as maxima. :param dataset_entry: A dataset entry from the dataset. :return: input image (np.array), target heatmaps (np.array), predicted heatmaps, transformation (sitk.Transform) """ generators = dataset_entry['generators'] transformations = dataset_entry['transformations'] transformation = transformations['image'] full_image = generators['image'] if self.data_format == 'channels_first': image_size_for_tilers = np.minimum( full_image.shape[1:], list(reversed(self.max_image_size_for_cropped_test))).tolist() image_size_np = [1] + image_size_for_tilers labels_size_np = [self.num_landmarks] + image_size_for_tilers image_tiler = ImageTiler(full_image.shape, image_size_np, self.cropped_inc, True, -1) prediction_tiler = ImageTiler( (self.num_landmarks, ) + full_image.shape[1:], labels_size_np, self.cropped_inc, True, -np.inf) prediction_local_tiler = ImageTiler( (self.num_landmarks, ) + full_image.shape[1:], labels_size_np, self.cropped_inc, True, -np.inf) prediction_spatial_tiler = ImageTiler( (self.num_landmarks, ) + full_image.shape[1:], labels_size_np, self.cropped_inc, True, -np.inf) else: image_size_for_tilers = np.minimum( full_image.shape[:-1], list(reversed(self.max_image_size_for_cropped_test))).tolist() image_size_np = image_size_for_tilers + [1] labels_size_np = image_size_for_tilers + [self.num_landmarks] image_tiler = ImageTiler(full_image.shape, image_size_np, self.cropped_inc, True, -1) prediction_tiler = ImageTiler( full_image.shape[:-1] + (self.num_landmarks, ), labels_size_np, self.cropped_inc, True, -np.inf) prediction_local_tiler = ImageTiler( full_image.shape[:-1] + (self.num_landmarks, ), labels_size_np, self.cropped_inc, True, -np.inf) prediction_spatial_tiler = ImageTiler( full_image.shape[:-1] + (self.num_landmarks, ), labels_size_np, self.cropped_inc, True, -np.inf) for image_tiler, prediction_tiler, prediction_local_tiler, prediction_spatial_tiler in zip( image_tiler, prediction_tiler, prediction_local_tiler, prediction_spatial_tiler): current_image = image_tiler.get_current_data(full_image) predictions = [] predictions_local = [] predictions_spatial = [] for load_model_filename in self.load_model_filenames: if len(self.load_model_filenames) > 1: self.load_model(load_model_filename) prediction, prediction_local, prediction_spatial = self.call_model( np.expand_dims(current_image, axis=0)) predictions.append(prediction.numpy()) predictions_local.append(prediction_local.numpy()) predictions_spatial.append(prediction_spatial.numpy()) prediction = np.mean(predictions, axis=0) prediction_local = np.mean(predictions_local, axis=0) prediction_spatial = np.mean(predictions_spatial, axis=0) image_tiler.set_current_data(current_image) prediction_tiler.set_current_data(np.squeeze(prediction, axis=0)) prediction_local_tiler.set_current_data( np.squeeze(prediction_local, axis=0)) prediction_spatial_tiler.set_current_data( np.squeeze(prediction_spatial, axis=0)) return image_tiler.output_image, prediction_tiler.output_image, prediction_local_tiler.output_image, prediction_spatial_tiler.output_image, transformation