コード例 #1
0
    def __getitem__(self, index):
        datafiles = self.files[index]
        image = Image.open(datafiles["img"]).convert('RGB')
        label = Image.open(datafiles["label"])
        size = np.asarray(image).shape
        name = datafiles["name"]
        composed_transforms = transforms.Compose([
            tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
            tr.ToTensor()])
        sample = {'image': image, 'label': label}
        sampled = composed_transforms(sample)
        image, label = sampled['image'], sampled['label']

        return image, label, np.array(size), name
コード例 #2
0
    def __getitem__(self, index):
        datafiles = self.files[index]
        image = Image.open(datafiles["img"]).convert('RGB')
        label = Image.open(datafiles["label"])
        size = np.asarray(image).shape
        name = datafiles["name"]

        composed_transforms = transforms.Compose([
            tr.RandomHorizontalFlip(),
            # tr.RandomRotate(180),
            tr.RandomScaleCrop(base_size=self.base_size, crop_size=self.crop_size, fill=255),
            tr.RandomGaussianBlur(),
            tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
            tr.ToTensor()])
        sample = {'image': image, 'label': label}
        sampled = composed_transforms(sample)
        image, label = sampled['image'], sampled['label']
        return image, label, np.array(size), name
コード例 #3
0
ファイル: test.py プロジェクト: lonely0000cc/thesis
    elif args.model_name == 'FlowNet':
        model = FlowNet(args)
    elif args.model_name == 'CircleFlowSRNet':
        model = CircleFlowSRNet(args)
    elif args.model_name == 'TestSRNet':
        model = TestSRNet(args)
    elif args.model_name == 'TestCircleSRNet':
        model = TestCircleSRNet(args)
    elif args.model_name == 'TestGNet':
        model = TestGNet(args)
    elif args.model_name == 'TestContinueNet':
        model = TestContinueNet(args)
    else:
        raise ValueError('no model named: {}'.format(args.model_name))

    transform = transforms.Compose([transforms.Normalize()])
    transform = transforms.Compose([transforms.Normalize()])
    if args.model_name.find('Un') >= 0:
        dataset = Unsupervised_Dataset_Loader(args.test_dir, args.batch_size,
                                              args.scale, args.im_crop_H,
                                              args.im_crop_W, transform,
                                              args.random_crop)
    else:
        #dataset = Dataset_Loader(args.test_dir, args.adv_data_dir,args.batch_size,args.im_crop_H,args.im_crop_W,transform,args.random_crop)
        dataset = Dataset_Loader(args.test_dir, args.batch_size,
                                 args.im_crop_H, args.im_crop_W, transform,
                                 args.random_crop)

    if args.test_new:
        #dataset = Dataset_Loader(args.test_dir, args.adv_data_dir,args.batch_size,args.im_crop_H,args.im_crop_W,transform,args.random_crop)
        test_dataloader = torch.utils.data.DataLoader(