def train(train_indexes, BG_img, params): folder = params["folder"] marginX = params["marginX"] marginY = params["marginY"] neg_weight = params["neg_weight"] method = params["method"] feature = params["feature"] train_feature_count = 0 train_features, train_labels = [], [] print "Extracting positive training features..." # Read positive train features for i in tqdm(range(len(train_indexes))): img = img_read(folder, train_indexes[i]) #motion_img = read_motion_image(folder, train_indexes[i], BG_img) height, width = img.shape bboxes = add_bbox_margin(read_bboxes(folder, train_indexes[i]), marginX, marginY, height, width) for j in bboxes: img_cut = img[j[0]:j[1], j[2]:j[3]] #motion_img_cut = motion_img[j[0]:j[1], j[2]:j[3]] train_feature_count += 1 #train_features.append(extract(img_cut, motion_img_cut, method, feature)) train_features.append(extract(img_cut, None, method, feature)) train_labels.append(1) print "Positive training features are extracted." print "Extracting negative training features..." pos_train_feature_count = train_feature_count # Read negative train features for j in tqdm(range(pos_train_feature_count * neg_weight)): i = sample(train_indexes, 1)[0] img = img_read(folder, i) height, width = img.shape bboxes = add_bbox_margin(read_bboxes(folder, i), marginX, marginY, height, width) neg_bb = rand_bbox(bboxes, height, width) if overlaps(neg_bb, bboxes) != -1: continue #motion_img = read_motion_image(folder, i, BG_img) img_cut = img[neg_bb[0]:neg_bb[1], neg_bb[2]:neg_bb[3]] #motion_img_cut = motion_img[neg_bb[0]:neg_bb[1], neg_bb[2]:neg_bb[3]] train_feature_count += 1 #train_features.append(extract(img_cut, motion_img_cut, method, feature)) train_features.append(extract(img_cut, None, method, feature)) train_labels.append(-1) print "Negative training features are extracted." return train_features, train_labels, train_feature_count
def test(test_indexes, BG_img, params): folder = params["folder"] marginX = params["marginX"] marginY = params["marginY"] neg_weight = params["neg_weight"] method = params["method"] feature = params["feature"] test_features, test_labels = [], [] test_feature_count = 0 print "Extracting positive test features..." # Read positive test examples for i in tqdm(range(len(test_indexes))): img = img_read(folder, test_indexes[i]) #motion_img = read_motion_image(folder, test_indexes[i], BG_img) height, width = img.shape bboxes = add_bbox_margin(read_bboxes(folder, test_indexes[i]), marginX, marginY, height, width) for j in bboxes: img_cut = img[j[0]:j[1], j[2]:j[3]] #motion_img_cut = motion_img[j[0]:j[1], j[2]:j[3]] test_feature_count += 1 #test_features.append(extract(img_cut, motion_img_cut, method, feature)) test_features.append(extract(img_cut, None, method, feature)) test_labels.append(1) pos_test_feature_count = test_feature_count print "Positive test features are extracted." print "Extracting negative test features..." # Read negative test examples for j in tqdm(range(pos_test_feature_count*neg_weight)): i = sample(test_indexes, 1)[0] img = img_read(folder, i) height, width = img.shape bboxes = add_bbox_margin(read_bboxes(folder, i), marginX, marginY, height, width) neg_bb = rand_bbox(bboxes, height, width); if overlaps(neg_bb, bboxes) != -1: continue #motion_img = read_motion_image(folder, i, BG_img) img_cut = img[neg_bb[0]:neg_bb[1], neg_bb[2]:neg_bb[3]] #motion_img_cut = motion_img[neg_bb[0]:neg_bb[1], neg_bb[2]:neg_bb[3]] test_feature_count += 1 #test_features.append(extract(img_cut, motion_img_cut, method, feature)) test_features.append(extract(img_cut, None, method, feature)) test_labels.append(-1) print "Negative test features are extracted." return test_features, test_labels, test_feature_count
def bootstrap(bootstrap_indexes, BG_img, params, trf, trl, trfc, svm): folder = params["folder"] marginX = params["marginX"] marginY = params["marginY"] neg_weight = params["neg_weight"] method = params["method"] feature = params["feature"] train_features = trf train_labels = trl train_feature_count = trfc print "Starting bootstrapping..." # Bootstrapping for i in tqdm(range(len(bootstrap_indexes))): img = img_read(folder, bootstrap_indexes[i]) #motion_img = read_motion_image(folder, bootstrap_indexes[i], BG_img) bboxes = read_bboxes(folder, bootstrap_indexes[i]) #detections = detect_vehicles(img, motion_img, svm, params) detections = detect_vehicles(img, None, svm, params) hard_negatives = [] for j in detections: if overlaps(j, bboxes) == -1: hard_negatives.append(j) height, width = img.shape hard_negatives = add_bbox_margin(hard_negatives, marginX, marginY, height, width) for j in hard_negatives: img_cut = img[j[0]:j[1], j[2]:j[3]] #motion_img_cut = motion_img[j[0]:j[1], j[2]:j[3]] train_feature_count += 1 #train_features.append(extract(img_cut, motion_img_cut, method, feature)) train_features.append(extract(img_cut, None, method, feature)) train_labels.append(-1) print "Bootstrap finished." return train_features, train_labels