コード例 #1
0
def processData():

    dataLoader.loadTrainingSets(testIndex=-1,
                                fast=False,
                                sampleSize=150,
                                dt_type=config.dataset_type.mnist_hw)
    dataLoader.loadTestSets(dt_type=config.dataset_type.mnist_hw)

    data = {
        'train': {
            'img': shd.TrainingDataSet.imagesDataSet,
            'lbl': shd.TrainingDataSet.labelsDataSet
        },
        'test': {
            'img': shd.TestSetData.imagesDataSet,
            'lbl': shd.TestSetData.labelsDataSet
        }
    }

    shd.TrainingDataSet.imagesDataSet = None
    shd.TrainingDataSet.labelsDataSet = None
    shd.TestSetData.imagesDataSet = None
    shd.TestSetData.labelsDataSet = None

    return data
コード例 #2
0
def loadData():
    dataLoader.loadTrainingSets(testIndex=-1, fast=False, sampleSize=5000, dt_type=config.dataset_type.mnist_hw)
    dataLoader.loadTestSets(dt_type=config.dataset_type.mnist_hw)
コード例 #3
0
        sharedData.KNN_Results_5.resultByIndex[testLabel] = rslArr
    else:
        rslArr[predictedLabel_3] += 1


def findNearestNeighbors(inputVector):
    distanceDic = defaultdict(list)
    for i in range(len(sharedData.TrainingDataSet.imagesDataSet)):
        distance = mh.calculateDistance(inputVector, sharedData.TrainingDataSet.imagesDataSet[i])
        distanceDic[distance] = sharedData.TrainingDataSet.labelsDataSet[i]  # who care if distance for two or more is equal?

    return distanceDic


dataLoader.loadTrainingSets(testIndex=-1, fast=False, sampleSize=100)
dataLoader.loadTestSets()

k_array = [1, 3, 5]

for i in tqdm(range(len(sharedData.TestSetData.imagesDataSet))):
    testVector = sharedData.TestSetData.imagesDataSet[i]
    testLabel = sharedData.TestSetData.labelsDataSet[i]

    distanceDic = findNearestNeighbors(inputVector=testVector)

    calculateResults(testLabel=testLabel, resultDic=distanceDic)


print('----1NN--------')
i =0
for key in sorted(sharedData.KNN_Results_1.resultByIndex):
コード例 #4
0
def load_data():
    dataLoader.loadTrainingSets(testIndex=-1, fast=True, sampleSize=100, dt_type=config.dataset_type.mnist_fashion)
    dataLoader.loadTestSets(dt_type=config.dataset_type.mnist_fashion)