def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) # Gets original image and its size. image = data['image'] if self._aug_policy: if self._aug_policy in AUTOAUG_POLICIES: if autoaug_imported: image, boxes = autoaugment_utils.distort_image_with_autoaugment( image, boxes, self._aug_policy) else: raise ImportError( 'Unable to get autoaugment_utils, likely due ' 'to imcompatability with TF 2.X.') image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, } return image, labels
def _parse_predict_data(self, data): """Parses data for prediction.""" # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Compute Anchor boxes. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, } # If mode is PREDICT_WITH_GT, returns groundtruths and training targets # in labels. if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape) groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': boxes, 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) labels['groundtruths'] = groundtruths # Computes training objective for evaluation loss. classes = data['groundtruth_classes'] image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) labels['cls_targets'] = cls_targets labels['box_targets'] = box_targets labels['num_positives'] = num_positives return { 'images': image, 'labels': labels, }
def _parse_eval_data(self, data): """Parses data for evaluation. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. groundtruths: source_id: Groundtruth source id. height: Original image height. width: Original image width. boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. areas: Box area or mask area depend on whether mask is present. is_crowds: Whether the ground truth label is a crowd label. num_groundtruths: Number of ground truths in the image. """ # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # Assigns anchor targets. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Sets up groundtruth data for evaluation. groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_groundtruths': tf.shape(data['groundtruth_classes']), 'boxes': box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape), 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } # TODO(b/143766089): Add ground truth masks for segmentation metrics. groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) # Packs labels for model_fn outputs. labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, 'groundtruths': groundtruths, } return image, labels
def _parse_predict_data(self, data): """Parses data for prediction. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: A dictionary of {'images': image, 'labels': labels} where images: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. source_ids: Source image id. Default value -1 if the source id is empty in the groundtruth annotation. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. """ # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Compute Anchor boxes. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) labels = { 'source_id': dataloader_utils.process_source_id(data['source_id']), 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, } if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape) groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': boxes, 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) labels['groundtruths'] = groundtruths return { 'images': image, 'labels': labels, }
def get_normalized_image(self, decoded_data): return input_utils.normalize_image(decoded_data['image'])
def _parse_train_data(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. rpn_score_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. rpn_box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. gt_boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. gt_classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. gt_masks: groundtrugh masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. """ classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] if self._include_mask: masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: if self._include_mask: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) else: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Transfer boxes to the original image space and do normalization. cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape) num_masks = tf.shape(masks)[0] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), cropped_boxes, box_indices=tf.range(num_masks, dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear') masks = tf.squeeze(masks, axis=-1) # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.RpnAnchorLabeler(input_anchor, self._rpn_match_threshold, self._rpn_unmatched_threshold, self._rpn_batch_size_per_im, self._rpn_fg_fraction) rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, 'rpn_score_targets': rpn_score_targets, 'rpn_box_targets': rpn_box_targets, } labels['gt_boxes'] = input_utils.clip_or_pad_to_fixed_size( boxes, self._max_num_instances, -1) labels['gt_classes'] = input_utils.clip_or_pad_to_fixed_size( classes, self._max_num_instances, -1) if self._include_mask: labels['gt_masks'] = input_utils.clip_or_pad_to_fixed_size( masks, self._max_num_instances, -1) return image, labels
def _parse_train_data(self, data): """Parse data for ShapeMask training.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) masks = tf.gather(masks, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # If not using category, makes all categories with id = 0. if not self._use_category: classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32) # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, self._output_size, aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_scale = image_info[2, :] offset = image_info[3, :] # Resizes and crops boxes and masks. boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, self._output_size, offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) masks = tf.gather(masks, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, self._output_size) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # Sample groundtruth masks/boxes/classes for mask branch. num_masks = tf.shape(masks)[0] mask_shape = tf.shape(masks)[1:3] # Pad sampled boxes/masks/classes to a constant batch size. padded_boxes = input_utils.pad_to_fixed_size(boxes, self._num_sampled_masks) padded_classes = input_utils.pad_to_fixed_size(classes, self._num_sampled_masks) padded_masks = input_utils.pad_to_fixed_size(masks, self._num_sampled_masks) # Randomly sample groundtruth masks for mask branch training. For the image # without groundtruth masks, it will sample the dummy padded tensors. rand_indices = tf.random.shuffle( tf.range(tf.maximum(num_masks, self._num_sampled_masks))) rand_indices = tf.mod(rand_indices, tf.maximum(num_masks, 1)) rand_indices = rand_indices[0:self._num_sampled_masks] rand_indices = tf.reshape(rand_indices, [self._num_sampled_masks]) sampled_boxes = tf.gather(padded_boxes, rand_indices) sampled_classes = tf.gather(padded_classes, rand_indices) sampled_masks = tf.gather(padded_masks, rand_indices) # Jitter the sampled boxes to mimic the noisy detections. sampled_boxes = box_utils.jitter_boxes( sampled_boxes, noise_scale=self._box_jitter_scale) sampled_boxes = box_utils.clip_boxes(sampled_boxes, self._output_size) # Compute mask targets in feature crop. A feature crop fully contains a # sampled box. mask_outer_boxes = box_utils.compute_outer_boxes( sampled_boxes, tf.shape(image)[0:2], scale=self._outer_box_scale) mask_outer_boxes = box_utils.clip_boxes(mask_outer_boxes, self._output_size) # Compensate the offset of mask_outer_boxes to map it back to original image # scale. mask_outer_boxes_ori = mask_outer_boxes mask_outer_boxes_ori += tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) mask_outer_boxes_ori /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) norm_mask_outer_boxes_ori = box_utils.normalize_boxes( mask_outer_boxes_ori, mask_shape) # Set sampled_masks shape to [batch_size, height, width, 1]. sampled_masks = tf.cast(tf.expand_dims(sampled_masks, axis=-1), tf.float32) mask_targets = tf.image.crop_and_resize( sampled_masks, norm_mask_outer_boxes_ori, box_ind=tf.range(self._num_sampled_masks), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear', extrapolation_value=0, name='train_mask_targets') mask_targets = tf.where(tf.greater_equal(mask_targets, 0.5), tf.ones_like(mask_targets), tf.zeros_like(mask_targets)) mask_targets = tf.squeeze(mask_targets, axis=-1) if self._up_sample_factor > 1: fine_mask_targets = tf.image.crop_and_resize( sampled_masks, norm_mask_outer_boxes_ori, box_ind=tf.range(self._num_sampled_masks), crop_size=[ self._mask_crop_size * self._up_sample_factor, self._mask_crop_size * self._up_sample_factor ], method='bilinear', extrapolation_value=0, name='train_mask_targets') fine_mask_targets = tf.where( tf.greater_equal(fine_mask_targets, 0.5), tf.ones_like(fine_mask_targets), tf.zeros_like(fine_mask_targets)) fine_mask_targets = tf.squeeze(fine_mask_targets, axis=-1) else: fine_mask_targets = mask_targets # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) valid_image = tf.cast(tf.not_equal(num_masks, 0), tf.int32) if self._mask_train_class == 'all': mask_is_valid = valid_image * tf.ones_like(sampled_classes, tf.int32) else: # Get the intersection of sampled classes with training splits. mask_valid_classes = tf.cast( tf.expand_dims( class_utils.coco_split_class_ids(self._mask_train_class), 1), sampled_classes.dtype) match = tf.reduce_any( tf.equal(tf.expand_dims(sampled_classes, 0), mask_valid_classes), 0) mask_is_valid = valid_image * tf.cast(match, tf.int32) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, # For ShapeMask. 'mask_boxes': sampled_boxes, 'mask_outer_boxes': mask_outer_boxes, 'mask_targets': mask_targets, 'fine_mask_targets': fine_mask_targets, 'mask_classes': sampled_classes, 'mask_is_valid': mask_is_valid, } return image, labels
def _parse_predict_data(self, data): """Parse data for ShapeMask training.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] masks = data['groundtruth_instance_masks'] # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # If not using category, makes all categories with id = 0. if not self._use_category: classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32) # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, self._output_size, aug_scale_min=1.0, aug_scale_max=1.0) image_scale = image_info[2, :] offset = image_info[3, :] # Resizes and crops boxes and masks. boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, self._output_size, offset) masks = input_utils.resize_and_crop_masks( tf.expand_dims(masks, axis=-1), image_scale, self._output_size, offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, self._output_size) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, } if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape), 'classes': data['groundtruth_classes'], # 'masks': tf.squeeze(masks, axis=-1), 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) # Computes training labels. (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # Packs labels for model_fn outputs. labels.update({ 'cls_targets': cls_targets, 'box_targets': box_targets, 'num_positives': num_positives, 'groundtruths': groundtruths, }) return { 'images': image, 'labels': labels, }
def _parse_eval_data(self, data): """Parses data for training and evaluation.""" groundtruths = {} classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] # Gets original image and its size. image = data['image'] image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Sets up groundtruth data for evaluation. groundtruths = { 'source_id': data['source_id'], 'num_groundtrtuhs': tf.shape(data['groundtruth_classes']), 'image_info': image_info, 'boxes': box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape), 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = process_source_id( groundtruths['source_id']) groundtruths = pad_groundtruths_to_fixed_size(groundtruths, self._max_num_instances) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, 'groundtruths': groundtruths, } return image, labels
def _parse_train_data(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], num_groundtrtuhs: number of objects. boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. masks: groundtrugh masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. pasted_objects_mask: a binary tensor with the same size as image which is computed as the union of all the objects masks. """ classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] if self._include_mask: masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: if self._include_mask: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) else: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) if self._include_mask: masks = tf.gather(masks, indices) uncropped_masks = tf.cast(masks, tf.int8) uncropped_masks = tf.expand_dims(uncropped_masks, axis=3) uncropped_masks = input_utils.resize_and_crop_masks( uncropped_masks, image_scale, self._output_size, offset) # Transfer boxes to the original image space and do normalization. cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape) num_masks = tf.shape(masks)[0] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), cropped_boxes, box_indices=tf.range(num_masks, dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear') masks = tf.squeeze(masks, axis=-1) indices = tf.range(start=0, limit=tf.shape(classes)[0], dtype=tf.int32) # Samples the numbers of masks for pasting. m = tf.random.uniform(shape=[], maxval=tf.shape(classes)[0] + 1, dtype=tf.int32) m = tf.math.minimum(m, tf.shape(classes)[0]) # Shuffles the indices of objects and keep the first m objects for pasting. shuffled_indices = tf.random.shuffle(indices) shuffled_indices = tf.slice(shuffled_indices, [0], [m]) boxes = tf.gather(boxes, shuffled_indices) masks = tf.gather(masks, shuffled_indices) classes = tf.gather(classes, shuffled_indices) uncropped_masks = tf.gather(uncropped_masks, shuffled_indices) pasted_objects_mask = tf.reduce_max(uncropped_masks, 0) pasted_objects_mask = tf.cast(pasted_objects_mask, tf.bool) labels = { 'image': image, 'image_info': image_info, 'num_groundtrtuhs': tf.shape(classes)[0], 'boxes': boxes, 'masks': masks, 'classes': classes, 'pasted_objects_mask': pasted_objects_mask, } return labels
def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(input=classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( pred=tf.greater(tf.size(input=is_crowds), 0), true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf. int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) # Gets original image and its size. image = data['image'] # NOTE: The autoaugment method works best when used alongside the standard # horizontal flipping of images along with size jittering and normalization. if self._use_autoaugment: image, boxes = autoaugment_utils.distort_image_with_autoaugment( image, boxes, self._autoaugment_policy_name) image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, } return image, labels
def main(unused_argv): del unused_argv # Load the label map. print(' - Loading the label map...') label_map_dict = {} if FLAGS.label_map_format == 'csv': with tf.gfile.Open(FLAGS.label_map_file, 'r') as csv_file: reader = csv.reader(csv_file, delimiter=':') for row in reader: if len(row) != 2: raise ValueError( 'Each row of the csv label map file must be in ' '`id:name` format.') id_index = int(row[0]) name = row[1] label_map_dict[id_index] = { 'id': id_index, 'name': name, } else: raise ValueError('Unsupported label map format: {}.'.format( FLAGS.label_mape_format)) params = config_factory.config_generator(FLAGS.model) if FLAGS.config_file: params = params_dict.override_params_dict(params, FLAGS.config_file, is_strict=True) params = params_dict.override_params_dict(params, FLAGS.params_override, is_strict=True) params.override( { 'architecture': { 'use_bfloat16': False, # The inference runs on CPU/GPU. }, }, is_strict=True) params.validate() params.lock() model = model_factory.model_generator(params) with tf.Graph().as_default(): image_input = tf.placeholder(shape=(), dtype=tf.string) image = tf.io.decode_image(image_input, channels=3) image.set_shape([None, None, 3]) image = input_utils.normalize_image(image) image_size = [FLAGS.image_size, FLAGS.image_size] image, image_info = input_utils.resize_and_crop_image( image, image_size, image_size, aug_scale_min=1.0, aug_scale_max=1.0) image.set_shape([image_size[0], image_size[1], 3]) # batching. images = tf.reshape(image, [1, image_size[0], image_size[1], 3]) images_info = tf.expand_dims(image_info, axis=0) # model inference outputs = model.build_outputs(images, {'image_info': images_info}, mode=mode_keys.PREDICT) # outputs['detection_boxes'] = ( # outputs['detection_boxes'] / tf.tile(images_info[:, 2:3, :], [1, 1, 2])) predictions = outputs # Create a saver in order to load the pre-trained checkpoint. saver = tf.train.Saver() image_with_detections_list = [] with tf.Session() as sess: print(' - Loading the checkpoint...') saver.restore(sess, FLAGS.checkpoint_path) image_files = tf.gfile.Glob(FLAGS.image_file_pattern) for i, image_file in enumerate(image_files): print(' - Processing image %d...' % i) with tf.gfile.GFile(image_file, 'rb') as f: image_bytes = f.read() image = Image.open(image_file) image = image.convert( 'RGB') # needed for images with 4 channels. width, height = image.size np_image = (np.array(image.getdata()).reshape( height, width, 3).astype(np.uint8)) print(np_image.shape) predictions_np = sess.run(predictions, feed_dict={image_input: image_bytes}) logits = predictions_np['logits'][0] print(logits.shape) labels = np.argmax(logits.squeeze(), -1) print(labels.shape) print(labels) labels = np.array(Image.fromarray(labels.astype('uint8'))) print(labels.shape) plt.imshow(labels) plt.savefig(f"temp-{i}.png")
def main(unused_argv): del unused_argv # Load the label map. print(' - Loading the label map...') label_map_dict = {} if FLAGS.label_map_format == 'csv': with tf.gfile.Open(FLAGS.label_map_file, 'r') as csv_file: reader = csv.reader(csv_file, delimiter=':') for row in reader: if len(row) != 2: raise ValueError( 'Each row of the csv label map file must be in ' '`id:name` format.') id_index = int(row[0]) name = row[1] label_map_dict[id_index] = { 'id': id_index, 'name': name, } else: raise ValueError('Unsupported label map format: {}.'.format( FLAGS.label_mape_format)) params = config_factory.config_generator(FLAGS.model) if FLAGS.config_file: params = params_dict.override_params_dict(params, FLAGS.config_file, is_strict=True) params = params_dict.override_params_dict(params, FLAGS.params_override, is_strict=True) params.override( { 'architecture': { 'use_bfloat16': False, # The inference runs on CPU/GPU. }, }, is_strict=True) params.validate() params.lock() model = model_factory.model_generator(params) with tf.Graph().as_default(): image_input = tf.placeholder(shape=(), dtype=tf.string) image = tf.io.decode_image(image_input, channels=3) image.set_shape([None, None, 3]) image = input_utils.normalize_image(image) image_size = [FLAGS.image_size, FLAGS.image_size] image, image_info = input_utils.resize_and_crop_image( image, image_size, image_size, aug_scale_min=1.0, aug_scale_max=1.0) image.set_shape([image_size[0], image_size[1], 3]) # batching. images = tf.reshape(image, [1, image_size[0], image_size[1], 3]) images_info = tf.expand_dims(image_info, axis=0) # model inference outputs = model.build_outputs(images, {'image_info': images_info}, mode=mode_keys.PREDICT) outputs['detection_boxes'] = ( outputs['detection_boxes'] / tf.tile(images_info[:, 2:3, :], [1, 1, 2])) predictions = outputs # Create a saver in order to load the pre-trained checkpoint. saver = tf.train.Saver() image_with_detections_list = [] with tf.Session() as sess: print(' - Loading the checkpoint...') saver.restore(sess, FLAGS.checkpoint_path) res = [] image_files = tf.gfile.Glob(FLAGS.image_file_pattern) for i, image_file in enumerate(image_files): print(' - Processing image %d...' % i) with tf.gfile.GFile(image_file, 'rb') as f: image_bytes = f.read() image = Image.open(image_file) image = image.convert( 'RGB') # needed for images with 4 channels. width, height = image.size np_image = (np.array(image.getdata()).reshape( height, width, 3).astype(np.uint8)) predictions_np = sess.run(predictions, feed_dict={image_input: image_bytes}) num_detections = int(predictions_np['num_detections'][0]) np_boxes = predictions_np['detection_boxes'][ 0, :num_detections] np_scores = predictions_np['detection_scores'][ 0, :num_detections] np_classes = predictions_np['detection_classes'][ 0, :num_detections] np_classes = np_classes.astype(np.int32) np_attributes = predictions_np['detection_attributes'][ 0, :num_detections, :] np_masks = None if 'detection_masks' in predictions_np: instance_masks = predictions_np['detection_masks'][ 0, :num_detections] np_masks = mask_utils.paste_instance_masks( instance_masks, box_utils.yxyx_to_xywh(np_boxes), height, width) encoded_masks = [ mask_api.encode(np.asfortranarray(np_mask)) for np_mask in list(np_masks) ] res.append({ 'image_file': image_file, 'boxes': np_boxes, 'classes': np_classes, 'scores': np_scores, 'attributes': np_attributes, 'masks': encoded_masks, }) image_with_detections = ( visualization_utils. visualize_boxes_and_labels_on_image_array( np_image, np_boxes, np_classes, np_scores, label_map_dict, instance_masks=np_masks, use_normalized_coordinates=False, max_boxes_to_draw=FLAGS.max_boxes_to_draw, min_score_thresh=FLAGS.min_score_threshold)) image_with_detections_list.append(image_with_detections) print(' - Saving the outputs...') formatted_image_with_detections_list = [ Image.fromarray(image.astype(np.uint8)) for image in image_with_detections_list ] html_str = '<html>' image_strs = [] for formatted_image in formatted_image_with_detections_list: with io.BytesIO() as stream: formatted_image.save(stream, format='JPEG') data_uri = base64.b64encode(stream.getvalue()).decode('utf-8') image_strs.append( '<img src="data:image/jpeg;base64,{}", height=800>'.format( data_uri)) images_str = ' '.join(image_strs) html_str += images_str html_str += '</html>' with tf.gfile.GFile(FLAGS.output_html, 'w') as f: f.write(html_str) np.save(FLAGS.output_file, res)
def initiate(): # Load the label map. print(' - Loading the label map...') label_map_dict = {} if 'csv' == 'csv': with tf.gfile.Open('dataset/fashionpedia_label_map.csv', 'r') as csv_file: reader = csv.reader(csv_file, delimiter=':') for row in reader: if len(row) != 2: raise ValueError( 'Each row of the csv label map file must be in ' '`id:name` format.') id_index = int(row[0]) name = row[1] label_map_dict[id_index] = { 'id': id_index, 'name': name, } else: raise ValueError('Unsupported label map format: {}.'.format('csv')) params = config_factory.config_generator('attribute_mask_rcnn') if 'configs/yaml/spinenet49_amrcnn.yaml': params = params_dict.override_params_dict( params, 'configs/yaml/spinenet49_amrcnn.yaml', is_strict=True) params = params_dict.override_params_dict(params, '', is_strict=True) params.override( { 'architecture': { 'use_bfloat16': False, # The inference runs on CPU/GPU. }, }, is_strict=True) params.validate() params.lock() model = model_factory.model_generator(params) with tf.Graph().as_default(): image_input = tf.placeholder(shape=(), dtype=tf.string) image = tf.io.decode_image(image_input, channels=3) image.set_shape([None, None, 3]) image = input_utils.normalize_image(image) image_size = [640, 640] image, image_info = input_utils.resize_and_crop_image( image, image_size, image_size, aug_scale_min=1.0, aug_scale_max=1.0) image.set_shape([image_size[0], image_size[1], 3]) # batching. images = tf.reshape(image, [1, image_size[0], image_size[1], 3]) images_info = tf.expand_dims(image_info, axis=0) # model inference outputs = model.build_outputs(images, {'image_info': images_info}, mode=mode_keys.PREDICT) outputs['detection_boxes'] = ( outputs['detection_boxes'] / tf.tile(images_info[:, 2:3, :], [1, 1, 2])) predictions = outputs # Create a saver in order to load the pre-trained checkpoint. saver = tf.train.Saver() sess = tf.Session() print(' - Loading the checkpoint...') saver.restore(sess, 'fashionpedia-spinenet-49/model.ckpt') print(' - Checkpoint Loaded...') return sess, predictions, image_input
def _parse_train_data_v2(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. rpn_score_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. rpn_box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. gt_boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. gt_classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. gt_masks: groundtrugh masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. """ if self._use_autoaugment: try: from utils import ( autoaugment_utils, ) # pylint: disable=g-import-not-at-top except ImportError as e: logging.exception("Autoaugment is not supported in TF 2.x.") raise e classes = data["groundtruth_classes"] boxes = data["groundtruth_boxes"] masks = None attributes = None if self._include_mask: masks = data["groundtruth_instance_masks"] if self._num_attributes: attributes = data["groundtruth_attributes"] is_crowds = data["groundtruth_is_crowd"] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(input=classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( pred=tf.greater(tf.size(input=is_crowds), 0), true_fn=lambda: tf.compat.v1.where( tf.logical_not(is_crowds))[:, 0], false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf. int64), ) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) if self._include_mask: masks = tf.gather(masks, indices) if self._num_attributes: attributes = tf.gather(attributes, indices) # Gets original image and its size. image = data["image"] # NOTE: The autoaugment method works best when used alongside the standard # horizontal flipping of images along with size jittering and normalization. if self._use_autoaugment and not self._apply_autoaugment_after_resizing: ( image, boxes, masks, ) = autoaugment_utils.distort_image_and_masks_with_autoaugment( image, boxes, masks, self._autoaugment_policy_name) # Flips image randomly during training. if self._aug_rand_hflip: if self._include_mask: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) else: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Resizes and crops image. image = tf.image.convert_image_dtype(image, dtype=tf.float32) image, image_info = input_utils.resize_and_crop_image( image, self._output_size, aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max, ) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. orig_image_shape = image_info[0] boxes = box_utils.denormalize_boxes(boxes, orig_image_shape) # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. rescaled_image_shape = tf.shape(input=image)[:2] image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, rescaled_image_shape, offset) # Filters out ground truth boxes that are all zeros. boxes, classes, masks, attributes = self._remove_empty_boxes( boxes, classes, masks, attributes) # apply the autoaugment after resizing if self._use_autoaugment and self._apply_autoaugment_after_resizing: # prepare image and boxes for the autoaugment image = tf.image.convert_image_dtype(image, dtype=tf.uint8) boxes = box_utils.normalize_boxes(boxes, rescaled_image_shape) # prepare masks for the autoaugment masks = tf.expand_dims(masks, axis=-1) scaled_mask_size = tf.cast( tf.round(orig_image_shape * image_scale), tf.int32) scaled_masks = tf.image.resize( masks, scaled_mask_size, method=tf.image.ResizeMethod.BILINEAR) offset_int = tf.cast(offset, tf.int32) masks = scaled_masks[:, offset_int[0]:offset_int[0] + rescaled_image_shape[0], offset_int[1]:offset_int[1] + rescaled_image_shape[1], ] masks = tf.squeeze(masks, axis=-1) masks = tf.cast(tf.greater(masks, 0.5), tf.float32) # apply the autoaugment ( image, boxes, masks, ) = autoaugment_utils.distort_image_and_masks_with_autoaugment( image, boxes, masks, self._autoaugment_policy_name) # convert the image back to float32 and denormalize bboxes image = tf.image.convert_image_dtype(image, dtype=tf.float32) boxes = box_utils.denormalize_boxes(boxes, rescaled_image_shape) # filters out empty bboxes boxes, classes, masks, attributes = self._remove_empty_boxes( boxes, classes, masks, attributes) if self._include_mask: if self._use_autoaugment and self._apply_autoaugment_after_resizing: # don't rescale boxes as masks were already resized cropped_boxes = box_utils.normalize_boxes( boxes, rescaled_image_shape) else: # transfer boxes to the original image space cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) cropped_boxes = box_utils.normalize_boxes( cropped_boxes, orig_image_shape) num_masks = tf.shape(input=masks)[0] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), cropped_boxes, box_indices=tf.range(num_masks, dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method="bilinear", ) masks = tf.squeeze(masks, axis=-1) # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # pad the image padded_size = input_utils.compute_padded_size(self._output_size, 2**self._max_level) image = tf.image.pad_to_bounding_box(image, 0, 0, padded_size[0], padded_size[1]) image_height, image_width, _ = image.get_shape().as_list() # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.Anchor( self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width), ) anchor_labeler = anchor.RpnAnchorLabeler( input_anchor, self._rpn_match_threshold, self._rpn_unmatched_threshold, self._rpn_batch_size_per_im, self._rpn_fg_fraction, ) rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { "anchor_boxes": input_anchor.multilevel_boxes, "image_info": image_info, "rpn_score_targets": rpn_score_targets, "rpn_box_targets": rpn_box_targets, } labels["gt_boxes"] = input_utils.pad_to_fixed_size( boxes, self._max_num_instances, -1) labels["gt_classes"] = input_utils.pad_to_fixed_size( classes, self._max_num_instances, -1) if self._include_mask: labels["gt_masks"] = input_utils.pad_to_fixed_size( masks, self._max_num_instances, -1) if self._num_attributes: labels["gt_attributes"] = input_utils.pad_to_fixed_size( attributes, self._max_num_instances, -1) return image, labels