コード例 #1
0
def main():
    """Main function for the Task 8"""
    k_value = get_input_k()
    while k_value > 8:
        print("Please enter a value of k within 8")
        k_value = get_input_k()
    folder = get_input_folder()

    print(global_constants.LINE_SEPARATOR)
    print("User Inputs summary")
    print(global_constants.LINE_SEPARATOR)
    print("k-value: {}\nFolder: {}".format(k_value, folder))
    print(global_constants.LINE_SEPARATOR)

    dim_red = DimensionReduction(None,
                                 "NMF",
                                 k_value,
                                 image_metadata=True,
                                 folder_metadata=folder)
    w, h, model = dim_red.execute()

    # printing the term weight
    print_tw(w, h, image_metadata=True)

    # save to csv
    filename = "task8" + "_" + str(k_value)
    CSVReader().save_to_csv(w, h, filename, image_metadata=True)
    print("Please check the CSV file: output/{}.csv".format(filename))
コード例 #2
0
def main():
    """Main function for the task 4"""
    feature_extraction_model = get_input_feature_extractor_model()
    dimension_reduction_model = get_input_dimensionality_reduction_model()
    k_value = get_input_k()
    label = get_input_image_label()
    folder = get_input_folder()
    image_name = get_input_image(folder)
    m_value = get_input_m()

    if dimension_reduction_model != "NMF":
        dist_func = "euclidean"
    elif feature_extraction_model in ["CM", "LBP"]:
        dist_func = "nvsc1"
    else:
        dist_func = "euclidean"
        # dist_func = "cosine"
        # dist_func = "chebyshev"
        # dist_func = "manhattan"
        # dist_func = "chi_square"
        # dist_func = "euclidean"

    print(global_constants.LINE_SEPARATOR)
    print("User Inputs summary")
    print(global_constants.LINE_SEPARATOR)
    print("Feature Extraction Model: {}\nDimensionality Reduction Model: {}\nk-value: {}\nLabel: {}\nFolder: {}\n"
          "Image: {}\nm-value: {}".format(feature_extraction_model, dimension_reduction_model, k_value, label, folder,
                                          image_name, m_value))
    print(global_constants.LINE_SEPARATOR)

    # Saves the returned model
    filename = "{0}_{1}_{2}_{3}".format(feature_extraction_model, dimension_reduction_model, label.replace(" ", ''),
                                        str(k_value))
    model = model_interact.load_model(filename=filename)
    if not model:
        print("Please run Task 3 for {}, {}, {} and {}".format(feature_extraction_model, dimension_reduction_model,
                                                               label, k_value))
        sys.exit(1)

    # Compute the reduced dimensions for the new query image and find m similar images
    dim_reduction = DimensionReduction(feature_extraction_model, dimension_reduction_model, k_value, label)
    result = dim_reduction.find_m_similar_images(model, m_value, folder, image_name, dist_func)
    print(global_constants.LINE_SEPARATOR)
    print("Similar Images")
    print(global_constants.LINE_SEPARATOR)
    for rec in result:
        print(rec)
    print(global_constants.LINE_SEPARATOR)

    title = {
        "Feature Extraction": feature_extraction_model,
        "Dimension Reduction": dimension_reduction_model,
        "k": k_value,
        "Label": label,
        "Distance": dist_func
             }
    show_images(os.path.abspath(os.path.join(folder, image_name)), result, title)
コード例 #3
0
def main():
    query_image = get_input_image("Hands")
    no_images = get_input_k("t")
    similar_images, img_vectors, query_image_vector = get_LSH_results(
        query_image, no_images)
    # while True:
    #     rerank_results(None)
    relevancefeedback.relevance_fdbk("DT", query_image, similar_images,
                                     img_vectors, query_image_vector)
    pass
コード例 #4
0
def main():
    """Main function for the script"""
    number_of_tasks = 6
    print("Welcome to Phase 3!")
    choice = get_task_number()
    if choice == "0":
        module_name = "phase3.load_csv"
    elif choice == "1":
        module_name = "phase3.task1"
    elif choice == "2":
        module_name = "p3task2"
    elif choice == "3":
        module_name = "phase3.task3"
    elif choice == "5a":
        l = get_input_k("L")
        k = get_input_k("K")
        comb = get_bool("Combine Models")
        task5a(l, k, comb)
        sys.exit(0)
    elif choice == "5b":
        query = get_input_image("Hands")
        top = get_input_k("K")
        comb = get_bool("Combine Models")
        task5b(query, top, visualize=True, combine_models=comb)
        sys.exit(0)
    elif choice == "6a":
        module_name = "task6_svm"
    elif choice == "6b":
        module_name = "task6_dt"
    elif choice == "6c":
        module_name = "task6_ppr"
    elif choice == "4c":
        module_name = "phase3.task4_ppr"
    elif choice == "4b":
        module_name = "task4_dt"
    elif choice == "4a":
        module_name = "task4_svm"
    else:
        module_name = "task{}".format(choice)
    module = importlib.import_module('{0}'.format(module_name))
    module.main()
コード例 #5
0
def main():
    feature_extraction_model = get_input_feature_extractor_model()
    dimension_reduction_model = get_input_dimensionality_reduction_model()
    label = get_input_image_label()
    k_value = get_input_k()
    query_folder = get_input_folder()
    image_name = get_input_image(query_folder)
    m_value = 1

    print(global_constants.LINE_SEPARATOR)
    print("User Inputs summary")
    print(global_constants.LINE_SEPARATOR)
    print(
        "Feature Extraction Model: {}\nDimensionality Reduction Model: {}\nLabel: {}\nk-value: {}\nQuery Folder: {}"
        "\nImage: {}".format(feature_extraction_model,
                             dimension_reduction_model, label, k_value,
                             query_folder, image_name, m_value))
    print(global_constants.LINE_SEPARATOR)

    if dimension_reduction_model != "NMF":
        dist_func = "euclidean"
    elif feature_extraction_model in ["CM", "LBP"]:
        dist_func = "nvsc1"
    else:
        dist_func = "euclidean"
        # dist_func = "cosine"
        # dist_func = "chebyshev"
        # dist_func = "manhattan"
        # dist_func = "chi_square"
        # dist_func = "euclidean"

    class1_label, class2_label = get_class_labels(label)

    run_task3(feature_extraction_model, dimension_reduction_model,
              class1_label, k_value)
    result1 = run_task4(feature_extraction_model, dimension_reduction_model,
                        query_folder, image_name, dist_func, class1_label,
                        k_value, m_value)
    class1_score = result1[0]['score']
    # print(class1_score)

    run_task3(feature_extraction_model, dimension_reduction_model,
              class2_label, k_value)
    result2 = run_task4(feature_extraction_model, dimension_reduction_model,
                        query_folder, image_name, dist_func, class2_label,
                        k_value, m_value)
    class2_score = result2[0]['score']
    # print(class2_score)

    final_label = class1_label if class1_score > class2_score else class2_label
    print(global_constants.LINE_SEPARATOR)
    print("{} !!!".format(final_label.upper()))
    print(global_constants.LINE_SEPARATOR)
コード例 #6
0
def main():
    feature_extraction_model = task6.feature_extraction_model
    dimension_reduction_model = task6.dimension_reduction_model
    k_value_for_ss_similarity = 10

    given_k_value = get_input_k()
    print(global_constants.LINE_SEPARATOR)
    print("User Inputs summary")
    print(global_constants.LINE_SEPARATOR)
    print("k-value: {}".format(given_k_value))
    print(global_constants.LINE_SEPARATOR)

    dim_reduction = DimensionReduction(feature_extraction_model, dimension_reduction_model, k_value_for_ss_similarity)
    # original feature vectors
    obj_feat_matrix = dim_reduction.get_object_feature_matrix()
    # get the img IDs from the database for images in the fit model
    img_set = pd.DataFrame({"imageId": obj_feat_matrix['imageId']})
    # get the metadata for each image with given subject id
    subject_data = dim_reduction.get_metadata("imageName", list(set(img_set["imageId"].tolist())))
    # unique subject IDs in dataset
    dataset_subject_ids = set((subject_data)["id"])
    subject_subject_matrix = []
    m_value = len(img_set)
    starttime = time.time()
    model = task6.load_model(dim_reduction, feature_extraction_model, dimension_reduction_model,
                             k_value_for_ss_similarity)
    folder = path.basename(path.dirname(obj_feat_matrix['path'][0]))

    for i, subjectid in enumerate(dataset_subject_ids):
        given_subject_images = dim_reduction.get_metadata("id", list([subjectid]))["imageName"].tolist()
        image_list_for_subject = list(set(given_subject_images).intersection(set(img_set["imageId"].tolist())))
        similar_subjects = task6.find_similar_subjects(subjectid, image_list_for_subject, model,
                                                       img_set, dim_reduction, m_value, folder)
        subject_subject_matrix.append(np.asarray(list(similar_subjects.values())))

    print("\nTime taken to create subject subject matrix: {}\n".format(time.time() - starttime))
    # perform nmf on subject_subject_matrix
    # given_k_value = 1
    matrix = pd.DataFrame(data={'imageId': list(dataset_subject_ids), 'featureVector': subject_subject_matrix})
    dim_red = DimensionReduction(None, "NMF", given_k_value, subject_subject=True, matrix=matrix)
    w, h, model = dim_red.execute()

    # display latent semantics
    # printing the term weight
    print_tw(w, h, subject_subject=True)
    # save to csv
    filename = "task7" + '_' + str(given_k_value)
    CSVReader().save_to_csv(w, None, filename, subject_subject=True)
    print("Please check the CSV file: output/{}.csv".format(filename))
コード例 #7
0
def main():
    """Main function for the script"""
    feature_extraction_model = "HOG"
    dimension_reduction_model = "PCA"
    k_value = get_input_k("k")
    K_value = get_input_k("K")
    folder = get_input_folder("Folder")
    dim_k_value = 40

    query_images = get_input_image_list(folder)
    start = time.time()
    dim_red = DimensionReduction(feature_extraction_model,
                                 dimension_reduction_model,
                                 dim_k_value,
                                 folder_metadata=folder,
                                 metadata_collection="labelled")
    obj_feat = dim_red.get_object_feature_matrix()
    features_list = np.array(obj_feat['featureVector'].tolist())
    images_list = np.array(obj_feat['imageId'])
    cos_sim = cosine_similarity(features_list)

    sim_graph = sim_graph_from_sim_max(cos_sim, images_list, k_value)
    results = ppr(sim_graph, images_list, query_images)
    results = results[:K_value]

    print("Top {} images from Personalized page Rank are:".format(K_value))
    for r in results:
        r["path"] = os.path.abspath(os.path.join(folder, r['imageId']))
        print(r)

    query_images_list = [
        os.path.abspath(os.path.join(folder, img)) for img in query_images
    ]
    title = {"Model": "Personalized Page Rank", "k": k_value, "K": K_value}
    show_images_ppr(query_images_list, title, results)
    print("Execution time: {} seconds".format(time.time() - start))
コード例 #8
0
def main():
    """Main function for the Task3"""
    feature_extraction_model = get_input_feature_extractor_model()
    dimension_reduction_model = get_input_dimensionality_reduction_model()
    k_value = get_input_k()
    label = get_input_image_label()

    print(global_constants.LINE_SEPARATOR)
    print("User Inputs summary")
    print(global_constants.LINE_SEPARATOR)
    print(
        "Feature Extraction Model: {}\nDimensionality Reduction Model: {}\nk-value: {}"
        .format(feature_extraction_model, dimension_reduction_model, k_value))
    print(global_constants.LINE_SEPARATOR)

    print(global_constants.LINE_SEPARATOR)
    print("Saving the metadata to MongoDB")
    print(global_constants.LINE_SEPARATOR)
    csv_reader.save_hand_csv_mongo("HandInfo.csv")
    print(global_constants.LINE_SEPARATOR)

    # Performs the dimensionality reduction
    dim_reduction = DimensionReduction(feature_extraction_model,
                                       dimension_reduction_model, k_value,
                                       label)
    obj_lat, feat_lat, model = dim_reduction.execute()

    # Saves the returned model
    filename = "{0}_{1}_{2}_{3}".format(feature_extraction_model,
                                        dimension_reduction_model,
                                        label.replace(" ", ''), str(k_value))
    model_interact.save_model(model=model, filename=filename)

    # Printing the term weight pairs
    data_tw = print_tw(obj_lat, feat_lat)

    # save term weight pairs to csv
    filename = "task3_{}_{}_{}_{}".format(feature_extraction_model,
                                          dimension_reduction_model, label,
                                          k_value)
    csv_reader.save_to_csv(obj_lat, feat_lat, filename)
    print("Please check the CSV file: output/{}.csv".format(filename))
コード例 #9
0
def main():
    """Main function for the task 1"""
    feature_extraction_model = get_input_feature_extractor_model()
    dimension_reduction_model = get_input_dimensionality_reduction_model()
    k_value = get_input_k()

    print(global_constants.LINE_SEPARATOR)
    print("User Inputs summary")
    print(global_constants.LINE_SEPARATOR)
    print(
        "Feature Extraction Model: {}\nDimensionality Reduction Model: {}\nk-value: {}"
        .format(feature_extraction_model, dimension_reduction_model, k_value))
    print(global_constants.LINE_SEPARATOR)

    # Performs the dimensionality reduction
    dim_reduction = DimensionReduction(feature_extraction_model,
                                       dimension_reduction_model, k_value)
    obj_lat, feat_lat = save_model(dim_reduction, feature_extraction_model,
                                   dimension_reduction_model, k_value)

    # Print term weight pairs to terminal
    data_tw = print_tw(obj_lat, feat_lat)

    # save term weight pairs to csv
    filename = "task1" + '_' + feature_extraction_model + '_' + dimension_reduction_model + '_' + str(
        k_value)
    CSVReader().save_to_csv(obj_lat, feat_lat, filename)
    print("Please check the CSV file: output/{}.csv".format(filename))

    data = dim_reduction.get_object_feature_matrix()

    title = {
        "Feature Extraction": feature_extraction_model,
        "Dimensionality Reduction": dimension_reduction_model,
        "k": k_value,
    }
    if k_value <= 20:
        print("Generating Visualization ...")
        show_data_ls(data, data_tw, title)
    print("Generating Visualization ...")
    show_feature_ls(data, feat_lat, title)
def main():
    query = get_input_image("Hands")
    no_images = get_input_k("t")
    get_probability_revelance_feedback(query, no_images)
コード例 #11
0
def main():
    query_image = get_input_image("Hands")
    no_images = get_input_k("t")
    # query_image = get_input_image()
    similar_images, img_vectors, query_image_vector = get_LSH_results(query_image, no_images)
    relevancefeedback.relevance_fdbk("PPR", query_image,similar_images,img_vectors, query_image_vector)
コード例 #12
0
def main():
    fea_ext_mod = "HOG"
    dim_red_mod = "SVD"
    dist_func = "euclidean"
    k_value = get_input_k("k-value")
    training_set = os.path.abspath(get_input_folder("Labelled"))
    test_set = os.path.abspath(get_input_folder("Classify"))
    label = "dorsal"
    obj_lat, feat_lat, model = compute_latent_semantic_for_label(
        fea_ext_mod, dim_red_mod, label, k_value, training_set)
    filename = "p3task1_{0}_{1}_{2}_{3}".format(fea_ext_mod, dim_red_mod,
                                                label, str(k_value))
    csv_reader.save_to_csv(obj_lat, feat_lat, filename)
    x_train = obj_lat['reducedDimensions'].tolist()

    red_dim_unlabelled_images = reduced_dimensions_for_unlabelled_folder(
        fea_ext_mod, dim_red_mod, k_value, label, training_set, test_set)
    x_test = red_dim_unlabelled_images['reducedDimensions'].tolist()

    dim_red = DimensionReduction(fea_ext_mod, dim_red_mod, k_value)
    labelled_aspect = dim_red.get_metadata_collection(
        "imageName", obj_lat['imageId'].tolist(),
        "labelled")['aspectOfHand'].tolist()
    y_train = [i.split(' ')[0] for i in labelled_aspect]

    label_p = 'palmar'
    obj_lat_p, feat_lat_p, model_p = compute_latent_semantic_for_label(
        fea_ext_mod, dim_red_mod, label_p, k_value, training_set)
    filename = "p3task1_{0}_{1}_{2}_{3}".format(fea_ext_mod, dim_red_mod,
                                                label_p, str(k_value))
    csv_reader.save_to_csv(obj_lat_p, feat_lat_p, filename)
    x_train += (obj_lat_p['reducedDimensions'].tolist())
    labelled_aspect = dim_red.get_metadata_collection(
        "imageName", obj_lat_p['imageId'].tolist(),
        "labelled")['aspectOfHand'].tolist()
    y_train += ([i.split(' ')[0] for i in labelled_aspect])

    zip_train = list(zip(x_train, y_train))
    random.shuffle(zip_train)
    x_train, y_train = zip(*zip_train)

    unlabelled_aspect = dim_red.get_metadata_collection(
        "imageName", red_dim_unlabelled_images['imageId'].tolist(),
        "unlabelled")['aspectOfHand'].tolist()
    y_test = [i.split(' ')[0] for i in unlabelled_aspect]
    lr = LogisticRegression(penalty='l2',
                            random_state=np.random.RandomState(42),
                            solver='lbfgs',
                            max_iter=300,
                            multi_class='ovr',
                            class_weight='balanced',
                            n_jobs=-1,
                            l1_ratio=0)
    lr.fit(x_train, y_train)
    # y_pred = lr.predict(x_test)
    predictions = lr.predict(x_test)
    unlabelled_images = red_dim_unlabelled_images['imageId'].tolist()
    predicted_labels = list(predictions)
    actual_labels = list(y_test)
    print("---------------------------")
    print("     Results:")
    print("---------------------------")
    print("     Accuracy:", lr.score(x_test, y_test))
    print("---------------------------")
    print("     Image ID             |   Prediction    |   Actual")
    for image_id, p, a in zip(unlabelled_images, predicted_labels,
                              actual_labels):
        print("     " + image_id + "     |   " + p + "        |   " + a)
コード例 #13
0
def main():

    k = get_input_k("C")
    training_set = get_input_folder("Labelled")
    test_set = get_input_folder("Classify")
    k_value = 30

    dim_reduction = DimensionReduction(feature_extraction_model,
                                       dimension_reduction_model, k_value)

    # obj_lat, feat_lat, model = dim_reduction.execute()
    label = 'dorsal'
    obj_lat, feat_lat, model = p3task1.compute_latent_semantic_for_label(
        feature_extraction_model, dimension_reduction_model, label, k_value,
        training_set)
    label_p = 'palmar'
    obj_lat_p, feat_lat_p, model_p = p3task1.compute_latent_semantic_for_label(
        feature_extraction_model, dimension_reduction_model, label_p, k_value,
        training_set)
    red_dim = p3task1.reduced_dimensions_for_unlabelled_folder(
        feature_extraction_model, dimension_reduction_model, k_value, label,
        training_set, test_set)

    #input for project
    df = obj_lat[['reducedDimensions', 'imageId']]
    df_p = obj_lat_p[['reducedDimensions', 'imageId']]
    #inputt for scikit
    tf = obj_lat['reducedDimensions']
    tf_p = obj_lat_p['reducedDimensions']

    a = []
    a_p = []
    for x in tf:
        a.append(x)
    for x in tf_p:
        a_p.append(x)

    X = df.values
    Y = df_p.values

    # k clusters
    # k=5
    #
    km = KMeans(n_clusters=k,
                random_state=0,
                n_init=30,
                init='k-means++',
                precompute_distances=True,
                n_jobs=-1).fit(a)
    km_p = KMeans(n_clusters=k,
                  random_state=0,
                  n_init=30,
                  init='k-means++',
                  precompute_distances=True,
                  n_jobs=-1).fit(a_p)

    # print(km.labels_)
    counter = np.zeros(k)
    counter_p = np.zeros(k)
    for k_m in km.labels_:
        counter[k_m] += 1
    # print(counter)
    for k_m_p in km_p.labels_:
        counter_p[k_m_p] += 1
    # print(counter_p)
    #
    d_cluster = km.predict(red_dim['reducedDimensions'].tolist())
    p_cluster = km_p.predict(red_dim['reducedDimensions'].tolist())

    unlabelled_aspect = dim_reduction.get_metadata_collection(
        "imageName", red_dim['imageId'].tolist(),
        "unlabelled")['aspectOfHand'].tolist()
    y_test = [i.split(' ')[0] for i in unlabelled_aspect]

    #min max test

    good = 0
    bad = 0

    # for ind in range(len(red_dim['reducedDimensions'])):

    #     cc_dorsal = km.cluster_centers_[d_cluster[ind]]
    #     cc_palmar = km_p.cluster_centers_[p_cluster[ind]]
    #     dist_dorsal = np.linalg.norm(red_dim['reducedDimensions'][ind]-cc_dorsal)
    #     dist_palmar = np.linalg.norm(red_dim['reducedDimensions'][ind]-cc_palmar)

    #     if dist_dorsal<dist_palmar:
    #         #print(red_dim['imageId'][ind], label, y_test[ind])
    #         if y_test[ind] == label:
    #             good +=1
    #         else:
    #             bad+=1
    #     else:
    #         #print(red_dim['imageId'][ind], 'palmar', y_test[ind])
    #         if y_test[ind] == label_p:
    #             good +=1
    #         else:
    #             bad+=1

    # print ("good",good)
    # print("bad",bad)
    # km.score()

    def kmeans_implementation(X):
        random = np.random.choice(len(X), size=k, replace=False)

        centroid = {}
        classes = {}
        classes2 = {}

        # for cen in range(k):
        #     for im in range(0,len(X)):
        #         distance=[np.linalg.norm(np.asarray(X[im][0]) - np.asarray(centroid[0])))]

        for i in range(k):
            centroid[i] = X[random[i]][0]

        for iter in range(500):

            for i in range(k):
                classes[i] = []
                classes2[i] = []
                distance = []

            for x in X:
                # print(x[1])
                distance = [
                    np.linalg.norm(
                        np.asarray(x[0]) - np.asarray(centroid[ind]))
                    for ind in range(len(centroid))
                ]

                classification = distance.index(min(distance))
                classes[classification].append(x)
                classes2[classification].append(x[0])
            previous = dict(centroid)

            for classification in classes2:
                centroid[classification] = np.average(classes2[classification],
                                                      axis=0)

            opti = 0

            for c in centroid:

                og_c = previous[c]
                current = centroid[c]
                if (np.array_equal(current, og_c)):
                    opti += 1

            if (opti == (k)):
                # print(iter)
                break

        return classes, centroid

    classes, centroid = kmeans_implementation(X)
    classes_p, centroid_p = kmeans_implementation(Y)

    #predict loop red_dimension is the query folder

    def predict_class(red_dim, centroid):
        query_classes = {}
        for i in range(k):
            query_classes[i] = []

        for ind in range(len(red_dim['reducedDimensions'])):
            cluster_distance = []
            cluster_distance = [
                np.linalg.norm(red_dim['reducedDimensions'][ind] -
                               np.asarray(centroid[q]))
                for q in range(len(centroid))
            ]
            query_classification = cluster_distance.index(
                min(cluster_distance))
            query_classes[query_classification].append(red_dim['imageId'][ind])
        return query_classes

    query_classes_dorsal = predict_class(red_dim, centroid)
    query_classes_palmar = predict_class(red_dim, centroid)

    correct = 0
    wrong = 0

    def centroid_mean(centroid):
        res_list = [0] * k_value
        mean_centroid = []
        for i in range(k):

            res_list = [a + b for a, b in zip(res_list, centroid[i])]

        for x in res_list:
            mean_centroid.append(x / k)

        return mean_centroid

    mean_centroid_dorsal = centroid_mean(centroid)
    mean_centroid_palmar = centroid_mean(centroid_p)

    dorsal_images = []
    palmar_images = []
    for ind in range(len(red_dim['reducedDimensions'])):
        image_center_dorsal = 0
        image_center_palmar = 0
        image_name = red_dim['imageId'][ind]

        for i in range(k):
            if (image_name in query_classes_dorsal[i]):
                image_center_dorsal = i
            if (image_name in query_classes_palmar[i]):
                image_center_palmar = i

        dorsal_distance = np.linalg.norm(red_dim['reducedDimensions'][ind] -
                                         centroid[image_center_dorsal])
        palmar_distance = np.linalg.norm(red_dim['reducedDimensions'][ind] -
                                         centroid_p[image_center_palmar])

        if dorsal_distance < palmar_distance:
            #print(red_dim['imageId'][ind], label, y_test[ind])´
            dorsal_images.append(red_dim['imageId'][ind])
            if y_test[ind] == label:

                correct += 1
            else:
                wrong += 1
        else:

            #print(red_dim['imageId'][ind], 'palmar', y_test[ind])
            palmar_images.append(red_dim['imageId'][ind])
            if y_test[ind] == label_p:
                correct += 1
            else:
                wrong += 1

    print("correct" + str(correct))
    print("wrong" + str(wrong))

    print("\nClick here: http://localhost:{0}/result\n".format(port_g))
    print("\nClick here: http://localhost:{0}/dorsal\n".format(port_g))
    print("\nClick here: http://localhost:{0}/palmar\n".format(port_g))

    # APP_ROOT = os.path.dirname(os.path.abspath(__file__))

    @app.route('/Dataset2/<filename>')
    def send_image(filename):
        return send_from_directory((training_set), filename)

    @app.route('/test_set/<filename>')
    def send_image_result(filename):
        return send_from_directory((test_set), filename)

    @app.route('/dorsal')
    def get_gallery():
        image_names = [classes, k]

        return render_template("demo.html", image_names=image_names)

    @app.route('/palmar')
    def get_gallery_p():
        image_names_p = [classes_p, k]

        return render_template("demo_p.html", image_names_p=image_names_p)

    @app.route('/result')
    def get_gallery_result():
        results = [dorsal_images, palmar_images]

        return render_template("task2.html", results=results)

    app.run(port=port_g)