コード例 #1
0
def process_tweet_paraphrase(input_path, output_path):
    raw_tweet_dataset = read_csv(input_path, load_header=True, delimiter="\t")
    tweet_dataset = [[
        idx,
        clean_tweet_text(row[2]),
        clean_tweet_text(row[3]),
        raw_label_map(row[4])
    ] for idx, row in enumerate(raw_tweet_dataset)]
    header = ["index", "sent1", "sent2", "label"]
    write_csv(tweet_dataset, header, output_path, delimiter="\t")
コード例 #2
0
ファイル: mkmgm.py プロジェクト: memmett/PyIPM
    sheet.write(19, 0, 'Species')
    sheet.write(19, 1, 'Diameter (cm)')
    sheet.write(19, 2, 'Trees/ha')
    sheet.write(19, 3, 'Height (m)')
    sheet.write(19, 4, 'Total Age')
    sheet.write(19, 5, 'BHAge')


###############################################################################

book = Workbook()


for plotfile in glob('*.csv'):
    plot, _ = plotfile.split('.')
    meas    = read_csv(plotfile)

    sheet = book.add_sheet(plot)
    mgm_sheet(sheet, plot, 0, 0)

    for i, r in enumerate(meas):
        sheet.write(20+i, 0, r.species)         # species
        sheet.write(20+i, 1, float(r.dbh)/10.0) # diameter
        sheet.write(20+i, 2, 10.0)              # trees/ha
        sheet.write(20+i, 3, 10.0)              # height
        sheet.write(20+i, 4, 10.0)              # total age
        sheet.write(20+i, 5, 10.0)              # bhage


book.save('MGM Stands.xls')
コード例 #3
0
ファイル: artr.py プロジェクト: memmett/PyIPM
    def __init__(self):
        
        Kernel.__init__(self)

        self.time_dependent = True

        # read climate data and measurements (cm^2)
        climate      = read_csv('kernels/artr/climate.csv')
        measurements = read_csv('kernels/artr/survivalDataARTR.csv')
        years        = sorted(list(set([ int(x.year) for x in measurements ])))
        fecundity_measurements = read_csv('kernels/artr/fecdat.csv')

        log_areas = {}
        for year in years:
            log_areas[year] = [ float(x.logArea) for x in measurements 
                                                 if int(x.year) == year ]
            
        # set attributes
        self.n0        = log_areas[years[0]]
        self.log_areas = log_areas
        self.years     = years
        self.climate   = climate
        self.fec_meas  = fecundity_measurements

        self.mortality_type = 'noexp'
        self.fecundity_type = 'uniform_exp'

        self._tweak_covariat = None
        self._tweak_factor   = 1.0


        # set parameters
        self.params = {

            'growth': {

                'mean': np.array(
            [ -6.134753578,  0.765515413,  0.006574618,  0.362328659 ]),

                'covariance': np.array(
            [[  2.3003264050, -3.551420e-04, -9.540608e-04, -1.202835e-01 ],
             [ -0.0003551420,  3.699543e-04,  1.274024e-06, -6.374569e-05 ],
             [ -0.0009540608,  1.274024e-06,  3.545569e-06,  3.898729e-05 ],
             [ -0.1202834507, -6.374569e-05,  3.898729e-05,  6.350332e-03 ]])
                },

            'survival': {

                'mean': np.array(
            [ -1.482555395,  0.753372235,  0.003454076, -0.001100492 ]),

                'covariance':
                    np.array(
            [[  1.149244e-01, -1.422819e-02, -4.075111e-04,  5.042504e-05 ],
             [ -1.422819e-02,  1.058307e-02,  5.006554e-05, -3.693585e-05 ],
             [ -4.075111e-04,  5.006554e-05,  1.520893e-06, -1.896803e-07 ],
             [  5.042504e-05, -3.693585e-05, -1.896803e-07,  1.351324e-07 ]])
                },

            'fecundity': {

                'mean': np.array(
            [ 3.16420466, 0.06773083, 0.02146190 ]),

                'covariance': 
                    np.array(
            [[  2.900329e-02,  3.790527e-04,  2.113102e-05 ],
             [  3.790527e-04,  1.101385e-04,  8.486999e-06 ],
             [  2.113102e-05,  8.486999e-06,  1.079253e-05 ]])
                }
            }

        # default parameters
        self.growth_params    = self.params['growth']['mean']
        self.survival_params  = self.params['survival']['mean']
        self.fecundity_params = self.params['fecundity']['mean']