コード例 #1
0
ファイル: datasets_ss.py プロジェクト: xzhou33/d-SNE
    def load_or_gen_list_dict(rec_f, rec):
        cls_idx_dict_f = os.path.splitext(rec_f)[0] + '.json'
        idx_cls_lst_f = os.path.splitext(rec_f)[0] + '-lst.json'
        if os.path.exists(cls_idx_dict_f) and os.path.exists(idx_cls_lst_f):
            idx_cls_lst = load_json(idx_cls_lst_f)
            cls_idx_dict = load_json(cls_idx_dict_f)

            idx_cls_lst = [int(item) for item in idx_cls_lst]

            keys = list(cls_idx_dict.keys())
            for k in keys:
                cls_idx_dict[int(k)] = cls_idx_dict.pop(k)
            return idx_cls_lst, cls_idx_dict
        else:
            idx_cls_lst = []
            for idx in rec.idx.keys():
                record = rec.read_idx(idx)
                h, _ = recordio.unpack(record)
                idx_cls_lst.append([idx, int(h.label)])

            cls_idx_dict = {}
            for idx, y in idx_cls_lst:
                if y in cls_idx_dict:
                    cls_idx_dict[y].append(idx)
                else:
                    cls_idx_dict[y] = [idx]

            idx_cls_lst = [int(l) for _, l in idx_cls_lst]

            save_json(idx_cls_lst, idx_cls_lst_f)
            save_json(cls_idx_dict, cls_idx_dict_f)

            return idx_cls_lst, cls_idx_dict
コード例 #2
0
ファイル: datasets_ss.py プロジェクト: xzhou33/d-SNE
    def load_or_gen_dict(rec_f, rec):
        cls_idx_dict_f = os.path.splitext(rec_f)[0] + '.json'
        if os.path.exists(cls_idx_dict_f):
            cls_idx_dict = load_json(cls_idx_dict_f)
            keys = list(cls_idx_dict.keys())
            for k in keys:
                cls_idx_dict[int(k)] = cls_idx_dict.pop(k)
            return cls_idx_dict
        else:
            idx_cls_lst = []
            for idx in rec.idx.keys():
                record = rec.read_idx(idx)
                h, _ = recordio.unpack(record)
                idx_cls_lst.append([idx, h.label])

            cls_idx_dict = {}
            for idx, y in idx_cls_lst:
                y = int(y)
                if y in cls_idx_dict:
                    cls_idx_dict[y].append(idx)
                else:
                    cls_idx_dict[y] = [idx]

            save_json(cls_idx_dict, os.path.splitext(rec_f)[0] + '.json')

            return cls_idx_dict
コード例 #3
0
 def _save_metadata(self):
     logging.info(self.args)
     meta_data_dict = {
         "args": vars(self.args),
         "optimizer": self.lr_scheduler.optimizer.state_dict(),
         "scheduler": self.lr_scheduler.state_dict(),
         "model": "%s" % self.model
     }
     save(meta_data_dict, self.files['metadata'])
     save_json(meta_data_dict, self.files['metadata'] + '.json')
     logging.info(meta_data_dict)
コード例 #4
0
def gen_cls_idx_dict():
    logits = np.loadtxt(args.preds)
    if len(logits.shape) == 2:
        preds = np.argmax(logits, axis=1)
    else:
        preds = logits

    cls_idx_dict = {}
    for i, y_hat in enumerate(preds):
        if y_hat in cls_idx_dict:
            cls_idx_dict[int(y_hat)].append(i)
        else:
            cls_idx_dict[int(y_hat)] = [i]

    save_json(cls_idx_dict, args.out)
コード例 #5
0
ファイル: datasets_ss.py プロジェクト: xzhou33/d-SNE
    def load_or_gen_list(rec_f, rec):
        idx_cls_lst_f = os.path.splitext(rec_f)[0] + '-lst.json'
        if os.path.exists(idx_cls_lst_f):
            idx_cls_lst = load_json(idx_cls_lst_f)
            idx_cls_lst = [int(l) for l in idx_cls_lst]
            return idx_cls_lst
        else:
            idx_cls_lst = []
            for idx in rec.idx.keys():
                record = rec.read_idx(idx)
                h, _ = recordio.unpack(record)
                idx_cls_lst.append(int(h.label))

            save_json(idx_cls_lst, idx_cls_lst_f)

            return idx_cls_lst
コード例 #6
0
def train(
    train_data,
    val_data,
    test_data,
    model: keras.Model,
    save_dir: pathlib.Path,
    config: Config,
    category_taxonomy: Taxonomy,
    category_names: List[str],
):
    print("Starting training...")
    temporary_log_dir = pathlib.Path(tempfile.mkdtemp())
    print("Temporary log directory: {}".format(temporary_log_dir))

    X_train, y_train = train_data
    X_val, y_val = val_data
    X_test, y_test = test_data

    model.fit(
        X_train,
        y_train,
        batch_size=config.train_config.batch_size,
        epochs=config.train_config.epochs,
        validation_data=(X_val, y_val),
        callbacks=[
            callbacks.TerminateOnNaN(),
            callbacks.ModelCheckpoint(
                filepath=str(save_dir /
                             "weights.{epoch:02d}-{val_loss:.4f}.hdf5"),
                monitor="val_loss",
                save_best_only=True,
            ),
            callbacks.TensorBoard(log_dir=str(temporary_log_dir),
                                  histogram_freq=2),
            callbacks.EarlyStopping(monitor="val_loss", patience=4),
            callbacks.CSVLogger(str(save_dir / "training.csv")),
        ],
    )
    print("Training ended")

    log_dir = save_dir / "logs"
    print("Moving log directory from {} to {}".format(temporary_log_dir,
                                                      log_dir))
    shutil.move(str(temporary_log_dir), str(log_dir))

    model.save(str(save_dir / "last_checkpoint.hdf5"))

    last_checkpoint_path = sorted(save_dir.glob("weights.*.hdf5"))[-1]

    print("Restoring last checkpoint {}".format(last_checkpoint_path))
    model = keras.models.load_model(str(last_checkpoint_path))

    print("Evaluating on validation dataset")
    y_pred_val = model.predict(X_val)
    report, clf_report = evaluation_report(y_val,
                                           y_pred_val,
                                           taxonomy=category_taxonomy,
                                           category_names=category_names)

    save_json(report, save_dir / "metrics_val.json")
    save_json(clf_report, save_dir / "classification_report_val.json")

    y_pred_test = model.predict(X_test)
    report, clf_report = evaluation_report(y_test,
                                           y_pred_test,
                                           taxonomy=category_taxonomy,
                                           category_names=category_names)

    save_json(report, save_dir / "metrics_test.json")
    save_json(clf_report, save_dir / "classification_report_test.json")
コード例 #7
0
ファイル: generate.py プロジェクト: stathius/wave_propagation
    args.water_depth = 10  # 10
    args.initial_stimulus = 1  # 1
    args.coriolis_force = 0.0  # 0
    args.water_viscocity = 10e-6  # 0
    args.TIME = 1.0  # 1
    args.dt = 0.01  # 0.01
    args.data_points = 5
    args.image_size_x = args.image_size_y = 184
else:
    plot = False
    args = get_args()

if not os.path.isdir(args.location):
    os.mkdir(args.location)

save_json(vars(args), os.path.join(args.location, 'parameters.json'))


def hillshade(array, azimuth, angle_altitude):

    x, y = np.gradient(array)
    slope = np.pi / 2. - np.arctan(np.sqrt(x * x + y * y))
    aspect = np.arctan2(-x, y)
    azimuthrad = azimuth * np.pi / 180.
    altituderad = angle_altitude * np.pi / 180.

    shaded = np.sin(altituderad) * np.sin(slope) + \
             np.cos(altituderad) * np.cos(slope) * \
             np.cos(azimuthrad - aspect)
    the_range = np.sort(np.reshape(shaded, -1))
    minimum = the_range[int(0.005 * len(the_range))]
コード例 #8
0
 def save_to_file(self, file):
     save(self, file)
     # save_json(self, file + '.json')
     save_json(self.state, file + '.state.json')
コード例 #9
0
X, y = generate_data_from_df(
    df,
    ingredient_to_id,
    category_to_id,
    product_name_vocabulary,
    nlp=nlp,
    product_name_max_length=config.model_config.product_name_max_length,
    product_name_preprocessing_config=config.product_name_preprocessing_config,
    nutriments_input=config.model_config.nutriment_input,
)

y_pred = model.predict(X)

category_taxonomy = Taxonomy.from_json(settings.CATEGORY_TAXONOMY_PATH)
report, clf_report = evaluation_report(y,
                                       y_pred,
                                       taxonomy=category_taxonomy,
                                       category_names=category_names)

output_prefix = args.output_prefix
if output_prefix:
    output_prefix += "_"

save_json(report,
          model_dir / "{}metrics_{}.json".format(output_prefix, eval_type))
save_json(
    clf_report,
    model_dir /
    "{}classification_report_{}.json".format(output_prefix, eval_type),
)