コード例 #1
0
    def log_mask(self, epoch):
        plt.switch_backend("agg")
        fig = plt.figure(figsize=(4, 3), dpi=400)
        plt.imshow(self.mask.cpu().detach().numpy(), cmap=plt.get_cmap("BuPu"))
        cbar = plt.colorbar()
        cbar.solids.set_edgecolor("face")

        plt.tight_layout()
        fig.canvas.draw()
        self.writer.add_image(
            "mask/mask", tensorboardX.utils.figure_to_image(fig), epoch
        )

        # fig = plt.figure(figsize=(4,3), dpi=400)
        # plt.imshow(self.feat_mask.cpu().detach().numpy()[:,np.newaxis], cmap=plt.get_cmap('BuPu'))
        # cbar = plt.colorbar()
        # cbar.solids.set_edgecolor("face")

        # plt.tight_layout()
        # fig.canvas.draw()
        # self.writer.add_image('mask/feat_mask', tensorboardX.utils.figure_to_image(fig), epoch)
        io_utils.log_matrix(
            self.writer, torch.sigmoid(self.feat_mask), "mask/feat_mask", epoch
        )

        fig = plt.figure(figsize=(4, 3), dpi=400)
        # use [0] to remove the batch dim
        plt.imshow(self.masked_adj[0].cpu().detach().numpy(), cmap=plt.get_cmap("BuPu"))
        cbar = plt.colorbar()
        cbar.solids.set_edgecolor("face")

        plt.tight_layout()
        fig.canvas.draw()
        self.writer.add_image(
            "mask/adj", tensorboardX.utils.figure_to_image(fig), epoch
        )

        if self.args.mask_bias:
            fig = plt.figure(figsize=(4, 3), dpi=400)
            # use [0] to remove the batch dim
            plt.imshow(self.mask_bias.cpu().detach().numpy(), cmap=plt.get_cmap("BuPu"))
            cbar = plt.colorbar()
            cbar.solids.set_edgecolor("face")

            plt.tight_layout()
            fig.canvas.draw()
            self.writer.add_image(
                "mask/bias", tensorboardX.utils.figure_to_image(fig), epoch
            )
コード例 #2
0
    def log_adj_grad(self, node_idx, pred_label, epoch, label=None):
        log_adj = False

        if self.graph_mode:
            predicted_label = pred_label
            # adj_grad, x_grad = torch.abs(self.adj_feat_grad(node_idx, predicted_label)[0])[0]
            adj_grad, x_grad = self.adj_feat_grad(node_idx, predicted_label)
            adj_grad = torch.abs(adj_grad)[0]
            x_grad = torch.sum(x_grad[0], 0, keepdim=True).t()
        else:
            predicted_label = pred_label[node_idx]
            # adj_grad = torch.abs(self.adj_feat_grad(node_idx, predicted_label)[0])[self.graph_idx]
            adj_grad, x_grad = self.adj_feat_grad(node_idx, predicted_label)
            adj_grad = torch.abs(adj_grad)[self.graph_idx]
            x_grad = x_grad[self.graph_idx][node_idx][:, np.newaxis]
            # x_grad = torch.sum(x_grad[self.graph_idx], 0, keepdim=True).t()
        adj_grad = (adj_grad + adj_grad.t()) / 2
        adj_grad = (adj_grad * self.adj).squeeze()
        if log_adj:
            io_utils.log_matrix(self.writer, adj_grad, "grad/adj_masked", epoch)
            self.adj.requires_grad = False
            io_utils.log_matrix(self.writer, self.adj.squeeze(), "grad/adj_orig", epoch)

        masked_adj = self.masked_adj[0].cpu().detach().numpy()

        # only for graph mode since many node neighborhoods for syn tasks are relatively large for
        # visualization
        if self.graph_mode:
            G = io_utils.denoise_graph(
                masked_adj, node_idx, feat=self.x[0], threshold=None, max_component=False
            )
            io_utils.log_graph(
                self.writer,
                G,
                name="grad/graph_orig",
                epoch=epoch,
                identify_self=False,
                label_node_feat=True,
                nodecolor="feat",
                edge_vmax=None,
                args=self.args,
            )
        io_utils.log_matrix(self.writer, x_grad, "grad/feat", epoch)

        adj_grad = adj_grad.detach().numpy()
        if self.graph_mode:
            print("GRAPH model")
            G = io_utils.denoise_graph(
                adj_grad,
                node_idx,
                feat=self.x[0],
                threshold=0.0003,  # threshold_num=20,
                max_component=True,
            )
            io_utils.log_graph(
                self.writer,
                G,
                name="grad/graph",
                epoch=epoch,
                identify_self=False,
                label_node_feat=True,
                nodecolor="feat",
                edge_vmax=None,
                args=self.args,
            )
        else:
            # G = io_utils.denoise_graph(adj_grad, node_idx, label=label, threshold=0.5)
            G = io_utils.denoise_graph(adj_grad, node_idx, threshold_num=12)
            io_utils.log_graph(
                self.writer, G, name="grad/graph", epoch=epoch, args=self.args
            )
コード例 #3
0
    def explain(
        self, node_idx, graph_idx=0, graph_mode=False, unconstrained=False, model="exp"
    ):
        """Explain a single node prediction
        """
        # index of the query node in the new adj
        if graph_mode:
            node_idx_new = node_idx
            sub_adj = self.adj[graph_idx]
            sub_feat = self.feat[graph_idx, :]
            sub_label = self.label[graph_idx]
            neighbors = np.asarray(range(self.adj.shape[0]))
        else:
            print("node label: ", self.label[graph_idx][node_idx])
            node_idx_new, sub_adj, sub_feat, sub_label, neighbors = self.extract_neighborhood(
                node_idx, graph_idx
            )
            print("neigh graph idx: ", node_idx, node_idx_new)
            sub_label = np.expand_dims(sub_label, axis=0)
        
        sub_adj = np.expand_dims(sub_adj, axis=0)
        sub_feat = np.expand_dims(sub_feat, axis=0)

        adj   = torch.tensor(sub_adj, dtype=torch.float)
        x     = torch.tensor(sub_feat, requires_grad=True, dtype=torch.float)
        label = torch.tensor(sub_label, dtype=torch.long)

        if self.graph_mode:
            pred_label = np.argmax(self.pred[0][graph_idx], axis=0)
            print("Graph predicted label: ", pred_label)
        else:
            pred_label = np.argmax(self.pred[graph_idx][neighbors], axis=1)
            print("Node predicted label: ", pred_label[node_idx_new])

        explainer = ExplainModule(
            adj=adj,
            x=x,
            model=self.model,
            label=label,
            args=self.args,
            writer=self.writer,
            graph_idx=self.graph_idx,
            graph_mode=self.graph_mode,
        )
        if self.args.gpu:
            explainer = explainer.cuda()

        self.model.eval()


        # gradient baseline
        if model == "grad":
            explainer.zero_grad()
            # pdb.set_trace()
            adj_grad = torch.abs(
                explainer.adj_feat_grad(node_idx_new, pred_label[node_idx_new])[0]
            )[graph_idx]
            masked_adj = adj_grad + adj_grad.t()
            masked_adj = nn.functional.sigmoid(masked_adj)
            masked_adj = masked_adj.cpu().detach().numpy() * sub_adj.squeeze()
        else:
            explainer.train()
            begin_time = time.time()
            for epoch in range(self.args.num_epochs):
                explainer.zero_grad()
                explainer.optimizer.zero_grad()
                ypred, adj_atts = explainer(node_idx_new, unconstrained=unconstrained)
                loss = explainer.loss(ypred, pred_label, node_idx_new, epoch)
                loss.backward()

                explainer.optimizer.step()
                if explainer.scheduler is not None:
                    explainer.scheduler.step()

                mask_density = explainer.mask_density()
                if self.print_training:
                    print(
                        "epoch: ",
                        epoch,
                        "; loss: ",
                        loss.item(),
                        "; mask density: ",
                        mask_density.item(),
                        "; pred: ",
                        ypred,
                    )
                single_subgraph_label = sub_label.squeeze()

                if self.writer is not None:
                    self.writer.add_scalar("mask/density", mask_density, epoch)
                    self.writer.add_scalar(
                        "optimization/lr",
                        explainer.optimizer.param_groups[0]["lr"],
                        epoch,
                    )
                    if epoch % 25 == 0:
                        explainer.log_mask(epoch)
                        explainer.log_masked_adj(
                            node_idx_new, epoch, label=single_subgraph_label
                        )
                        explainer.log_adj_grad(
                            node_idx_new, pred_label, epoch, label=single_subgraph_label
                        )

                    if epoch == 0:
                        if self.model.att:
                            # explain node
                            print("adj att size: ", adj_atts.size())
                            adj_att = torch.sum(adj_atts[0], dim=2)
                            # adj_att = adj_att[neighbors][:, neighbors]
                            node_adj_att = adj_att * adj.float().cuda()
                            io_utils.log_matrix(
                                self.writer, node_adj_att[0], "att/matrix", epoch
                            )
                            node_adj_att = node_adj_att[0].cpu().detach().numpy()
                            G = io_utils.denoise_graph(
                                node_adj_att,
                                node_idx_new,
                                threshold=3.8,  # threshold_num=20,
                                max_component=True,
                            )
                            io_utils.log_graph(
                                self.writer,
                                G,
                                name="att/graph",
                                identify_self=not self.graph_mode,
                                nodecolor="label",
                                edge_vmax=None,
                                args=self.args,
                            )
                if model != "exp":
                    break

            print("finished training in ", time.time() - begin_time)
            if model == "exp":
                masked_adj = (
                    explainer.masked_adj[0].cpu().detach().numpy() * sub_adj.squeeze()
                )
            else:
                adj_atts = nn.functional.sigmoid(adj_atts).squeeze()
                masked_adj = adj_atts.cpu().detach().numpy() * sub_adj.squeeze()

        fname = 'masked_adj_' + io_utils.gen_explainer_prefix(self.args) + (
                'node_idx_'+str(node_idx)+'graph_idx_'+str(self.graph_idx)+'.npy')
        with open(os.path.join(self.args.logdir, fname), 'wb') as outfile:
            np.save(outfile, np.asarray(masked_adj.copy()))
            print("Saved adjacency matrix to ", fname)
        return masked_adj
コード例 #4
0
    def explain_nodes(self, node_indices, args, graph_idx=0):
        """
        Explain nodes

        Args:
            - node_indices  :  Indices of the nodes to be explained 
            - args          :  Program arguments (mainly for logging paths)
            - graph_idx     :  Index of the graph to explain the nodes from (if multiple).
        """
        masked_adjs = [
            self.explain(node_idx, graph_idx=graph_idx) for node_idx in node_indices
        ]
        ref_idx = node_indices[0]
        ref_adj = masked_adjs[0]
        curr_idx = node_indices[1]
        curr_adj = masked_adjs[1]
        new_ref_idx, _, ref_feat, _, _ = self.extract_neighborhood(ref_idx)
        new_curr_idx, _, curr_feat, _, _ = self.extract_neighborhood(curr_idx)

        G_ref = io_utils.denoise_graph(ref_adj, new_ref_idx, ref_feat, threshold=0.1)
        denoised_ref_feat = np.array(
            [G_ref.nodes[node]["feat"] for node in G_ref.nodes()]
        )
        denoised_ref_adj = nx.to_numpy_matrix(G_ref)
        # ref center node
        ref_node_idx = list(G_ref.nodes()).index(new_ref_idx)

        G_curr = io_utils.denoise_graph(
            curr_adj, new_curr_idx, curr_feat, threshold=0.1
        )
        denoised_curr_feat = np.array(
            [G_curr.nodes[node]["feat"] for node in G_curr.nodes()]
        )
        denoised_curr_adj = nx.to_numpy_matrix(G_curr)
        # curr center node
        curr_node_idx = list(G_curr.nodes()).index(new_curr_idx)

        P, aligned_adj, aligned_feat = self.align(
            denoised_ref_feat,
            denoised_ref_adj,
            ref_node_idx,
            denoised_curr_feat,
            denoised_curr_adj,
            curr_node_idx,
            args=args,
        )
        io_utils.log_matrix(self.writer, P, "align/P", 0)

        G_ref = nx.convert_node_labels_to_integers(G_ref)
        io_utils.log_graph(self.writer, G_ref, "align/ref")
        G_curr = nx.convert_node_labels_to_integers(G_curr)
        io_utils.log_graph(self.writer, G_curr, "align/before")

        P = P.cpu().detach().numpy()
        aligned_adj = aligned_adj.cpu().detach().numpy()
        aligned_feat = aligned_feat.cpu().detach().numpy()

        aligned_idx = np.argmax(P[:, curr_node_idx])
        print("aligned self: ", aligned_idx)
        G_aligned = io_utils.denoise_graph(
            aligned_adj, aligned_idx, aligned_feat, threshold=0.5
        )
        io_utils.log_graph(self.writer, G_aligned, "mask/aligned")

        # io_utils.log_graph(self.writer, aligned_adj.cpu().detach().numpy(), new_curr_idx,
        #        'align/aligned', epoch=1)

        return masked_adjs