コード例 #1
0
ファイル: ae_setup.py プロジェクト: yw981/OD-test
def get_ae_config(args, model, dataset, BCE_Loss):
    print("Preparing training D1 for %s"%(dataset.name))

    # 80%, 20% for local train+test
    train_ds, valid_ds = dataset.split_dataset(0.8)

    if dataset.name in Global.mirror_augment:
        print(colored("Mirror augmenting %s"%dataset.name, 'green'))
        new_train_ds = train_ds + MirroredDataset(train_ds)
        train_ds = new_train_ds

    # Initialize the multi-threaded loaders.
    train_loader = DataLoader(train_ds, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
    valid_loader = DataLoader(valid_ds, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True)
    all_loader   = DataLoader(dataset,  batch_size=args.batch_size, num_workers=args.workers, pin_memory=True)

    # Set up the model
    model = model.to(args.device)

    # Set up the criterion
    criterion = None
    if BCE_Loss:
        criterion = nn.BCEWithLogitsLoss().to(args.device)
    else:
        criterion = nn.MSELoss().to(args.device)
        model.default_sigmoid = True

    # Set up the config
    config = IterativeTrainerConfig()

    config.name = 'autoencoder_%s_%s'%(dataset.name, model.preferred_name())

    config.train_loader = train_loader
    config.valid_loader = valid_loader
    config.phases = {
                    'train':   {'dataset' : train_loader,  'backward': True},
                    'test':    {'dataset' : valid_loader,  'backward': False},
                    'all':     {'dataset' : all_loader,    'backward': False},                        
                    }
    config.criterion = criterion
    config.classification = False
    config.cast_float_label = False
    config.autoencoder_target = True
    config.stochastic_gradient = True
    config.visualize = not args.no_visualize
    config.sigmoid_viz = BCE_Loss
    config.model = model
    config.logger = Logger()

    config.optim = optim.Adam(model.parameters(), lr=1e-3)
    config.scheduler = optim.lr_scheduler.ReduceLROnPlateau(config.optim, patience=10, threshold=1e-3, min_lr=1e-6, factor=0.1, verbose=True)
    config.max_epoch = 120
    
    if hasattr(model, 'train_config'):
        model_train_config = model.train_config()
        for key, value in model_train_config.iteritems():
            print('Overriding config.%s'%key)
            config.__setattr__(key, value)

    return config
コード例 #2
0
def get_classifier_config(args, model, dataset, mid=0):
    print("Preparing training D1 for %s" % (dataset.name))

    # 80%, 20% for local train+test
    train_ds, valid_ds = dataset.split_dataset(0.8)

    if dataset.name in Global.mirror_augment:
        print(colored("Mirror augmenting %s" % dataset.name, 'green'))
        new_train_ds = train_ds + MirroredDataset(train_ds)
        train_ds = new_train_ds

    # Initialize the multi-threaded loaders.
    train_loader = DataLoader(train_ds,
                              batch_size=args.batch_size / 2,
                              shuffle=True,
                              num_workers=args.workers,
                              pin_memory=True)
    valid_loader = DataLoader(valid_ds,
                              batch_size=args.batch_size,
                              num_workers=args.workers,
                              pin_memory=True)
    all_loader = DataLoader(dataset,
                            batch_size=args.batch_size,
                            num_workers=args.workers,
                            pin_memory=True)

    import methods.deep_ensemble as DE
    # Set up the model
    model = DE.DeepEnsembleWrapper(model).to(args.device)

    # Set up the criterion
    criterion = DE.DeepEnsembleLoss(ensemble_network=model).to(args.device)

    # Set up the config
    config = IterativeTrainerConfig()

    base_model_name = model.__class__.__name__
    if hasattr(model, 'preferred_name'):
        base_model_name = model.preferred_name()

    config.name = 'DeepEnsemble_%s_%s(%d)' % (dataset.name, base_model_name,
                                              mid)

    config.train_loader = train_loader
    config.valid_loader = valid_loader
    config.phases = {
        'train': {
            'dataset': train_loader,
            'backward': True
        },
        'test': {
            'dataset': valid_loader,
            'backward': False
        },
        'all': {
            'dataset': all_loader,
            'backward': False
        },
    }
    config.criterion = criterion
    config.classification = True
    config.stochastic_gradient = True
    config.visualize = not args.no_visualize
    config.model = model
    config.logger = Logger()

    config.optim = optim.Adam(model.parameters(), lr=1e-3)
    config.scheduler = optim.lr_scheduler.ReduceLROnPlateau(config.optim,
                                                            patience=10,
                                                            threshold=1e-2,
                                                            min_lr=1e-6,
                                                            factor=0.1,
                                                            verbose=True)
    config.max_epoch = 120

    if hasattr(model.model, 'train_config'):
        model_train_config = model.model.train_config()
        for key, value in model_train_config.iteritems():
            print('Overriding config.%s' % key)
            config.__setattr__(key, value)

    return config
コード例 #3
0
def get_pcnn_config(args, model, home_path, dataset):
    print("Preparing training D1 for %s" % (dataset.name))

    sample_im, _ = dataset[0]
    obs = sample_im.size()
    obs = [int(d) for d in obs]

    # 80%, 20% for local train+test
    train_ds, valid_ds = dataset.split_dataset(0.8)

    if dataset.name in Global.mirror_augment:
        print(colored("Mirror augmenting %s" % dataset.name, 'green'))
        new_train_ds = train_ds + MirroredDataset(train_ds)
        train_ds = new_train_ds

    # Initialize the multi-threaded loaders.
    train_loader = DataLoader(train_ds,
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.workers,
                              pin_memory=True)
    valid_loader = DataLoader(valid_ds,
                              batch_size=args.batch_size,
                              num_workers=args.workers,
                              pin_memory=True)
    all_loader = DataLoader(dataset,
                            batch_size=args.batch_size,
                            num_workers=args.workers,
                            pin_memory=True)

    # Set up the model
    model = model.to(args.device)

    # Set up the criterion
    criterion = pcnn_utils.PCNN_Loss(one_d=(model.input_channels == 1))

    # Set up the config
    config = IterativeTrainerConfig()

    config.name = 'PCNN_%s_%s' % (dataset.name, model.preferred_name())

    config.train_loader = train_loader
    config.valid_loader = valid_loader
    config.phases = {
        'train': {
            'dataset': train_loader,
            'backward': True
        },
        'test': {
            'dataset': valid_loader,
            'backward': False
        },
        'all': {
            'dataset': all_loader,
            'backward': False
        },
    }
    config.criterion = criterion
    config.classification = False
    config.cast_float_label = False
    config.autoencoder_target = True
    config.stochastic_gradient = True
    config.visualize = not args.no_visualize
    config.model = model
    config.logger = Logger(home_path)
    config.sampler = lambda x: sample(x.model, 32, obs)

    config.optim = optim.Adam(model.parameters(), lr=1e-3)
    config.scheduler = optim.lr_scheduler.ReduceLROnPlateau(config.optim,
                                                            patience=10,
                                                            threshold=1e-2,
                                                            min_lr=1e-5,
                                                            factor=0.1,
                                                            verbose=True)
    config.max_epoch = 60

    if hasattr(model, 'train_config'):
        model_train_config = model.train_config()
        for key, value in model_train_config.items():
            print('Overriding config.%s' % key)
            config.__setattr__(key, value)

    return config
コード例 #4
0
def get_classifier_config(args, model, dataset, balanced=False):
    print("Preparing training D1 for %s" % (dataset.name))

    # 80%, 20% for local train+test
    train_ds, valid_ds = dataset.split_dataset(0.8)

    if dataset.name in Global.mirror_augment:
        print(colored("Mirror augmenting %s" % dataset.name, 'green'))
        new_train_ds = train_ds + MirroredDataset(train_ds)
        train_ds = new_train_ds

    # Initialize the multi-threaded loaders.
    if balanced:
        y_train = []
        for x, y in train_ds:
            y_train.append(y.numpy())
        y_train = np.array(y_train)
        class_sample_count = np.array(
            [len(np.where(y_train == t)[0]) for t in np.unique(y_train)])
        print(class_sample_count)
        weight = 1. / class_sample_count
        samples_weight = np.array([weight[t] for t in y_train])

        samples_weight = torch.from_numpy(samples_weight)
        sampler = WeightedRandomSampler(
            samples_weight.type('torch.DoubleTensor'), len(samples_weight))
        train_loader = DataLoader(train_ds,
                                  batch_size=args.batch_size,
                                  num_workers=args.workers,
                                  pin_memory=True,
                                  sampler=sampler)

        y_val = []
        for x, y in valid_ds:
            y_val.append(y.numpy())
        y_val = np.array(y_val)
        class_sample_count = np.array(
            [len(np.where(y_val == t)[0]) for t in np.unique(y_val)])
        print(class_sample_count)
        weight = 1. / class_sample_count
        samples_weight = np.array([weight[t] for t in y_val])

        samples_weight = torch.from_numpy(samples_weight)
        sampler = WeightedRandomSampler(
            samples_weight.type('torch.DoubleTensor'), len(samples_weight))
        valid_loader = DataLoader(valid_ds,
                                  batch_size=args.batch_size,
                                  num_workers=args.workers,
                                  pin_memory=True,
                                  sampler=sampler)

    else:
        train_loader = DataLoader(train_ds,
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=args.workers,
                                  pin_memory=True)

        valid_loader = DataLoader(valid_ds,
                                  batch_size=args.batch_size,
                                  num_workers=args.workers,
                                  pin_memory=True)
    all_loader = DataLoader(dataset,
                            batch_size=args.batch_size,
                            num_workers=args.workers,
                            pin_memory=True)

    # Set up the criterion
    criterion = nn.NLLLoss().to(args.device)

    # Set up the model
    model = model.to(args.device)

    # Set up the config
    config = IterativeTrainerConfig()

    config.name = 'classifier_%s_%s' % (dataset.name, model.__class__.__name__)

    config.train_loader = train_loader
    config.valid_loader = valid_loader
    config.phases = {
        'train': {
            'dataset': train_loader,
            'backward': True
        },
        'test': {
            'dataset': valid_loader,
            'backward': False
        },
        'all': {
            'dataset': all_loader,
            'backward': False
        },
    }
    config.criterion = criterion
    config.classification = True
    config.stochastic_gradient = True
    config.visualize = not args.no_visualize
    config.model = model
    home_path = Models.get_ref_model_path(args,
                                          config.model.__class__.__name__,
                                          dataset.name,
                                          model_setup=True,
                                          suffix_str='base0')
    config.logger = Logger(home_path)

    config.optim = optim.Adam(model.parameters(), lr=1e-3)
    config.scheduler = optim.lr_scheduler.ReduceLROnPlateau(config.optim,
                                                            patience=10,
                                                            threshold=1e-2,
                                                            min_lr=1e-6,
                                                            factor=0.1,
                                                            verbose=True)
    config.max_epoch = 120

    if hasattr(model, 'train_config'):
        model_train_config = model.train_config()
        for key, value in model_train_config.items():
            print('Overriding config.%s' % key)
            config.__setattr__(key, value)

    return config
コード例 #5
0
ファイル: binary_classifier.py プロジェクト: yw981/OD-test
    def get_H_config(self, dataset, will_train=True):
        print("Preparing training D1+D2 (H)")
        print("Mixture size: %s" % colored('%d' % len(dataset), 'green'))
        import global_vars as Global

        # 80%, 20% for local train+test
        train_ds, valid_ds = dataset.split_dataset(0.8)

        if self.args.D1 in Global.mirror_augment:
            print(colored("Mirror augmenting %s" % self.args.D1, 'green'))
            new_train_ds = train_ds + MirroredDataset(train_ds)
            train_ds = new_train_ds

        # Initialize the multi-threaded loaders.
        train_loader = DataLoader(train_ds,
                                  batch_size=self.args.batch_size,
                                  shuffle=True,
                                  num_workers=self.args.workers,
                                  pin_memory=True,
                                  drop_last=True)
        valid_loader = DataLoader(valid_ds,
                                  batch_size=self.args.batch_size,
                                  num_workers=self.args.workers,
                                  pin_memory=True)
        all_loader = DataLoader(dataset,
                                batch_size=self.args.batch_size,
                                num_workers=self.args.workers,
                                pin_memory=True)

        # Set up the criterion
        criterion = nn.BCEWithLogitsLoss().cuda()

        # Set up the model
        model = Global.get_ref_classifier(
            self.args.D1)[self.default_model]().to(self.args.device)
        self.add_identifier = model.__class__.__name__
        if hasattr(model, 'preferred_name'):
            self.add_identifier = model.preferred_name()
        model = BinaryModelWrapper(model).to(self.args.device)

        # Set up the config
        config = IterativeTrainerConfig()

        base_model_name = model.__class__.__name__
        if hasattr(model, 'preferred_name'):
            base_model_name = model.preferred_name()

        config.name = '_%s[%s](%s->%s)' % (self.__class__.__name__,
                                           base_model_name, self.args.D1,
                                           self.args.D2)
        config.train_loader = train_loader
        config.valid_loader = valid_loader
        config.phases = {
            'train': {
                'dataset': train_loader,
                'backward': True
            },
            'test': {
                'dataset': valid_loader,
                'backward': False
            },
            'testU': {
                'dataset': all_loader,
                'backward': False
            },
        }
        config.criterion = criterion
        config.classification = True
        config.cast_float_label = True
        config.stochastic_gradient = True
        config.visualize = not self.args.no_visualize
        config.model = model
        config.logger = Logger()
        config.optim = optim.Adam(model.parameters(), lr=1e-3)
        config.scheduler = optim.lr_scheduler.ReduceLROnPlateau(config.optim,
                                                                patience=5,
                                                                threshold=1e-2,
                                                                min_lr=1e-6,
                                                                factor=0.1,
                                                                verbose=True)
        config.max_epoch = 30

        if hasattr(model, 'train_config'):
            model_train_config = model.train_config()
            for key, value in model_train_config.iteritems():
                print('Overriding config.%s' % key)
                config.__setattr__(key, value)

        return config