コード例 #1
0
 def __init__(self,
              model,
              grid_size,
              logger=LogFactory.get_default_logger()):
     self.model = model
     self.grid_size = grid_size
     self.logger = logger
コード例 #2
0
 def __init__(self,
              model,
              neighbour_area,
              logger=LogFactory.get_default_logger()):
     self.model = model
     self.neighbour_area = neighbour_area
     self.probability_calculator = CachedProbabilityCalculator()
     self.logger = logger
コード例 #3
0
 def train_model(train_config=TextureTrainConfiguration(), logger=LogFactory.get_default_logger()):
     """
     Gets examples path from config, trains a svm then dumps the model in a file
     """
     logger.log("Started training texture model")
     trainer = TextureModelTrainer(
         train_config.path_pos, train_config.path_neg, train_config.skin_label, train_config.non_skin_label)
     trainer.__train_and_store_model(train_config.path_models + "/" + train_config.selected_classifier, logger)
     logger.log("Done")
コード例 #4
0
 def __init__(self,
              with_position,
              sigma,
              tau,
              logger=LogFactory.get_default_logger()):
     self.with_position = with_position
     self.sigma = sigma
     self.tau = tau
     self.logger = logger
コード例 #5
0
    def get_detector(model_path,
                     detection_type,
                     detection_window_size,
                     logger=LogFactory.get_default_logger()):
        serializator = SerializationUtils(logger)
        model = serializator.load_joblib_object(model_path)

        if detection_type == 0:
            return GridDetector(model, detection_window_size, logger)
        else:
            return PerPixelDetector(model, detection_window_size, logger)
コード例 #6
0
    def get_detector(model_path, detector_type, neighbour_area, logger=LogFactory.get_default_logger()):
        serializer = SerializationUtils(logger)
        model = serializer.load_object(model_path)

        if detector_type == 0:
            detector = SimpleDetector(model, logger)
        elif detector_type == 1:
            detector = NeighbourDetector(model, neighbour_area, logger)
        else:
            detector = AverageOnSuperpixelDetector(model, neighbour_area, logger)
        return detector
コード例 #7
0
 def __init__(self,
              path_pos,
              path_neg,
              skin_label,
              non_skin_label,
              logger=LogFactory.get_default_logger()):
     self.path_pos = path_pos
     self.path_neg = path_neg
     self.skin_label = skin_label
     self.non_skin_label = non_skin_label
     self.model = None
     self.logger = logger
コード例 #8
0
    def __init__(self,
                 path_train,
                 color_space,
                 logger=LogFactory.get_default_logger()):
        self.path_train = path_train
        self.color_space = color_space

        self.appearances = {}
        self.appearances_as_skin = {}
        self.skin_pixels = 0
        self.non_skin_pixels = 0

        self.logger = logger
コード例 #9
0
    def __init__(self,
                 path_positive_images,
                 path_negative_images,
                 color_space,
                 logger=LogFactory.get_default_logger()):
        self.path_positive_images = path_positive_images
        self.path_negative_images = path_negative_images
        self.color_space = color_space

        self.appearances = {}
        self.appearances_as_skin = {}
        self.skin_pixels = 0
        self.non_skin_pixels = 0

        self.logger = logger
コード例 #10
0
    def __init__(self,
                 config=RunConfiguration(),
                 logger=LogFactory.get_default_logger()):
        logger.log('Initializing evaluator')

        self.config = config
        self.quickshift = QuickshiftSegmentation(config.qs_with_position,
                                                 config.qs_sigma,
                                                 config.qs_tau, logger)
        self.spm_detector = SpmDetectorFactory.get_detector(
            config.spm_model_path, config.spm_type, config.spm_neighbour_area,
            logger)
        self.texture_detector = TextureDetectorFactory.get_detector(
            config.texture_model_path, config.texture_detection_type,
            config.texture_detection_area, logger)
        self.logger = logger
コード例 #11
0
 def train_spm_model(train_config=SpmTrainConfiguration(),
                     logger=LogFactory.get_default_logger()):
     """
     Default factory method ; uses values from config
     """
     logger.log("Started training model")
     if train_config.database == 'compaq':
         extractor = CompaqComponentExtractor(train_config.path_compaq,
                                              train_config.color_space,
                                              logger)
     else:
         extractor = SfaComponentExtractor(train_config.path_pos,
                                           train_config.path_neg,
                                           train_config.color_space, logger)
     trainer = SPMModelTrainer(extractor, train_config.color_space)
     trainer.__train_and_store_model(train_config.path_models + '/' +
                                     train_config.selected_model)
     logger.log("Done")
コード例 #12
0
 def __init__(self, model, window_size, logger=LogFactory.get_default_logger()):
     self.model = model
     self.window_size = window_size
     self.probability_calculator = CachedProbabilityCalculator()
     self.logger = logger
コード例 #13
0
 def __init__(self, logger=LogFactory.get_default_logger()):
     self.logger = logger
コード例 #14
0
 def __init__(self, model, logger=LogFactory.get_default_logger()):
     self.model = model
     self.logger = logger