コード例 #1
0
    def __init__(self):
        parse_args(self)
        self.args.config = 'yolact_edge_mobilenetv2_config'
        set_cfg(self.args.config)
        self.args.trained_model = '/home/ht/catkin_ws/src/instance_segmentation/scripts/weights/yolact_edge_mobilenetv2_124_10000.pth'
        self.args.top_k = 10
        self.args.score_threshold = 0.3
        self.args.trt_batch_size = 3
        self.args.disable_tensorrt = False
        self.args.use_fp16_tensorrt = False
        self.args.use_tensorrt_safe_mode = True
        self.args.cuda = True
        self.args.fast_nms = True
        self.args.display_masks = True
        self.args.display_bboxes = True
        self.args.display_text = True
        self.args.display_scores = True
        self.args.display_linecomb = False
        self.args.fast_eval = False
        self.args.deterministic = False
        self.args.no_crop = False
        self.args.crop = True
        self.args.calib_images = '/home/ht/catkin_ws/src/instance_segmentation/scripts/data/coco/calib_images'

        setup_logger(logging_level=logging.INFO)
        self.logger = logging.getLogger('yolact.eval')

        self.color_cache = defaultdict(lambda: {})

        with torch.no_grad():
            cudnn.benchmark = True
            cudnn.fastest = True
            torch.set_default_tensor_type('torch.cuda.FloatTensor')

            self.logger.info('Loading model...')
            self.net = Yolact(training=False)
            if self.args.trained_model is not None:
                self.net.load_weights(self.args.trained_model, args=self.args)
            else:
                self.logger.warning('No weights loaded!')
            self.net.eval()
            self.logger.info('Model loaded.')
            convert_to_tensorrt(self.net,
                                cfg,
                                self.args,
                                transform=BaseTransform())
コード例 #2
0
def train(rank, args):
    if args.num_gpus > 1:
        multi_gpu_rescale(args)
    if rank == 0:
        if not os.path.exists(args.save_folder):
            os.mkdir(args.save_folder)

    # set up logger
    setup_logger(output=os.path.join(args.log_folder, cfg.name),
                 distributed_rank=rank)
    logger = logging.getLogger("yolact.train")

    w = SummaryHelper(distributed_rank=rank,
                      log_dir=os.path.join(args.log_folder, cfg.name))
    w.add_text("argv", " ".join(sys.argv))
    logger.info("Args: {}".format(" ".join(sys.argv)))
    import git
    with git.Repo(search_parent_directories=True) as repo:
        w.add_text("git_hash", repo.head.object.hexsha)
        logger.info("git hash: {}".format(repo.head.object.hexsha))

    try:
        logger.info("Initializing torch.distributed backend...")
        dist.init_process_group(backend='nccl',
                                init_method=args.dist_url,
                                world_size=args.num_gpus,
                                rank=rank)
    except Exception as e:
        logger.error("Process group URL: {}".format(args.dist_url))
        raise e

    dist.barrier()

    if torch.cuda.device_count() > 1:
        logger.info('Multiple GPUs detected! Turning off JIT.')

    collate_fn = detection_collate
    if cfg.dataset.name == 'YouTube VIS':
        dataset = YoutubeVIS(image_path=cfg.dataset.train_images,
                             info_file=cfg.dataset.train_info,
                             configs=cfg.dataset,
                             transform=SSDAugmentationVideo(MEANS))

        if cfg.dataset.joint == 'coco':
            joint_dataset = COCODetection(
                image_path=cfg.joint_dataset.train_images,
                info_file=cfg.joint_dataset.train_info,
                transform=SSDAugmentation(MEANS))
            joint_collate_fn = detection_collate

        if args.validation_epoch > 0:
            setup_eval()
            val_dataset = YoutubeVIS(image_path=cfg.dataset.valid_images,
                                     info_file=cfg.dataset.valid_info,
                                     configs=cfg.dataset,
                                     transform=BaseTransformVideo(MEANS))
        collate_fn = collate_fn_youtube_vis

    elif cfg.dataset.name == 'FlyingChairs':
        dataset = FlyingChairs(image_path=cfg.dataset.trainval_images,
                               info_file=cfg.dataset.trainval_info)

        collate_fn = collate_fn_flying_chairs

    else:
        dataset = COCODetection(image_path=cfg.dataset.train_images,
                                info_file=cfg.dataset.train_info,
                                transform=SSDAugmentation(MEANS))

        if args.validation_epoch > 0:
            setup_eval()
            val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                        info_file=cfg.dataset.valid_info,
                                        transform=BaseTransform(MEANS))

    # Set cuda device early to avoid duplicate model in master GPU
    if args.cuda:
        torch.cuda.set_device(rank)

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs.

    # use timer for experiments
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        logger.info('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume, args=args)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        logger.info('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    if cfg.flow.train_flow:
        criterion = OpticalFlowLoss()

    else:
        criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                                 pos_threshold=cfg.positive_iou_threshold,
                                 neg_threshold=cfg.negative_iou_threshold,
                                 negpos_ratio=3)

    if args.cuda:
        cudnn.benchmark = True
        net.cuda(rank)
        criterion.cuda(rank)
        net = nn.parallel.DistributedDataParallel(net,
                                                  device_ids=[rank],
                                                  output_device=rank,
                                                  broadcast_buffers=False,
                                                  find_unused_parameters=True)
        # net       = nn.DataParallel(net).cuda()
        # criterion = nn.DataParallel(criterion).cuda()

    optimizer = optim.SGD(filter(lambda x: x.requires_grad, net.parameters()),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    w.set_step(iteration)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size // args.num_gpus
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    from data.sampler_utils import InfiniteSampler, build_batch_data_sampler

    infinite_sampler = InfiniteSampler(dataset,
                                       seed=args.random_seed,
                                       num_replicas=args.num_gpus,
                                       rank=rank,
                                       shuffle=True)
    train_sampler = build_batch_data_sampler(infinite_sampler,
                                             images_per_batch=args.batch_size)

    data_loader = data.DataLoader(
        dataset,
        num_workers=args.num_workers,
        collate_fn=collate_fn,
        multiprocessing_context="fork" if args.num_workers > 1 else None,
        batch_sampler=train_sampler)
    data_loader_iter = iter(data_loader)

    if cfg.dataset.joint:
        joint_infinite_sampler = InfiniteSampler(joint_dataset,
                                                 seed=args.random_seed,
                                                 num_replicas=args.num_gpus,
                                                 rank=rank,
                                                 shuffle=True)
        joint_train_sampler = build_batch_data_sampler(
            joint_infinite_sampler, images_per_batch=args.batch_size)
        joint_data_loader = data.DataLoader(
            joint_dataset,
            num_workers=args.num_workers,
            collate_fn=joint_collate_fn,
            multiprocessing_context="fork" if args.num_workers > 1 else None,
            batch_sampler=joint_train_sampler)
        joint_data_loader_iter = iter(joint_data_loader)

    dist.barrier()

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()
    data_time_avg = MovingAverage(10)

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    def backward_and_log(prefix,
                         net_outs,
                         targets,
                         masks,
                         num_crowds,
                         extra_loss=None):
        optimizer.zero_grad()

        out = net_outs["pred_outs"]
        wrapper = ScatterWrapper(targets, masks, num_crowds)
        losses = criterion(out, wrapper, wrapper.make_mask())

        losses = {k: v.mean()
                  for k, v in losses.items()}  # Mean here because Dataparallel

        if extra_loss is not None:
            assert type(extra_loss) == dict
            losses.update(extra_loss)

        loss = sum([losses[k] for k in losses])

        # Backprop
        loss.backward()  # Do this to free up vram even if loss is not finite
        if torch.isfinite(loss).item():
            optimizer.step()

        # Add the loss to the moving average for bookkeeping
        for k in losses:
            loss_avgs[k].add(losses[k].item())
            w.add_scalar('{prefix}/{key}'.format(prefix=prefix, key=k),
                         losses[k].item())

        return losses

    logger.info('Begin training!')
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            while True:
                data_start_time = time.perf_counter()
                datum = next(data_loader_iter)
                dist.barrier()
                data_end_time = time.perf_counter()
                data_time = data_end_time - data_start_time
                if iteration != args.start_iter:
                    data_time_avg.add(data_time)
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until and cfg.lr_warmup_init < args.lr:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                elif cfg.lr_schedule == 'cosine':
                    set_lr(
                        optimizer,
                        args.lr *
                        ((math.cos(math.pi * iteration / cfg.max_iter) + 1.) *
                         .5))

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while cfg.lr_schedule == 'step' and step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                global lr
                w.add_scalar('meta/lr', lr)

                if cfg.dataset.name == "FlyingChairs":
                    imgs_1, imgs_2, flows = prepare_flow_data(datum)
                    net_outs = net(None, extras=(imgs_1, imgs_2))
                    # Compute Loss
                    optimizer.zero_grad()

                    losses = criterion(net_outs, flows)

                    losses = {k: v.mean()
                              for k, v in losses.items()
                              }  # Mean here because Dataparallel
                    loss = sum([losses[k] for k in losses])

                    # Backprop
                    loss.backward(
                    )  # Do this to free up vram even if loss is not finite
                    if torch.isfinite(loss).item():
                        optimizer.step()

                    # Add the loss to the moving average for bookkeeping
                    for k in losses:
                        loss_avgs[k].add(losses[k].item())
                        w.add_scalar('loss/%s' % k, losses[k].item())

                elif cfg.dataset.joint or not cfg.dataset.is_video:
                    if cfg.dataset.joint:
                        joint_datum = next(joint_data_loader_iter)
                        dist.barrier()
                        # Load training data
                        # Note, for training on multiple gpus this will use the custom replicate and gather I wrote up there
                        images, targets, masks, num_crowds = prepare_data(
                            joint_datum)
                    else:
                        images, targets, masks, num_crowds = prepare_data(
                            datum)
                    extras = {
                        "backbone": "full",
                        "interrupt": False,
                        "moving_statistics": {
                            "aligned_feats": []
                        }
                    }
                    net_outs = net(images, extras=extras)
                    out = net_outs["pred_outs"]
                    # Compute Loss
                    optimizer.zero_grad()

                    wrapper = ScatterWrapper(targets, masks, num_crowds)
                    losses = criterion(out, wrapper, wrapper.make_mask())

                    losses = {k: v.mean()
                              for k, v in losses.items()
                              }  # Mean here because Dataparallel
                    loss = sum([losses[k] for k in losses])

                    # Backprop
                    loss.backward(
                    )  # Do this to free up vram even if loss is not finite
                    if torch.isfinite(loss).item():
                        optimizer.step()

                    # Add the loss to the moving average for bookkeeping
                    for k in losses:
                        loss_avgs[k].add(losses[k].item())
                        w.add_scalar('joint/%s' % k, losses[k].item())

                # Forward Pass
                if cfg.dataset.is_video:
                    # reference frames
                    references = []
                    moving_statistics = {"aligned_feats": [], "conf_hist": []}
                    for idx, frame in enumerate(datum[:0:-1]):
                        images, annots = frame

                        extras = {
                            "backbone": "full",
                            "interrupt": True,
                            "keep_statistics": True,
                            "moving_statistics": moving_statistics
                        }

                        with torch.no_grad():
                            net_outs = net(images, extras=extras)

                        moving_statistics["feats"] = net_outs["feats"]
                        moving_statistics["lateral"] = net_outs["lateral"]

                        keys_to_save = ("outs_phase_1", "outs_phase_2")
                        for key in set(net_outs.keys()) - set(keys_to_save):
                            del net_outs[key]
                        references.append(net_outs)

                    # key frame with annotation, but not compute full backbone
                    frame = datum[0]
                    images, annots = frame
                    frame = (
                        images,
                        annots,
                    )
                    images, targets, masks, num_crowds = prepare_data(frame)

                    extras = {
                        "backbone": "full",
                        "interrupt": not cfg.flow.base_backward,
                        "moving_statistics": moving_statistics
                    }
                    gt_net_outs = net(images, extras=extras)
                    if cfg.flow.base_backward:
                        losses = backward_and_log("compute", gt_net_outs,
                                                  targets, masks, num_crowds)

                    keys_to_save = ("outs_phase_1", "outs_phase_2")
                    for key in set(gt_net_outs.keys()) - set(keys_to_save):
                        del gt_net_outs[key]

                    # now do the warp
                    if len(references) > 0:
                        reference_frame = references[0]
                        extras = {
                            "backbone": "partial",
                            "moving_statistics": moving_statistics
                        }

                        net_outs = net(images, extras=extras)
                        extra_loss = yolact_net.extra_loss(
                            net_outs, gt_net_outs)

                        losses = backward_and_log("warp",
                                                  net_outs,
                                                  targets,
                                                  masks,
                                                  num_crowds,
                                                  extra_loss=extra_loss)

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time
                w.add_scalar('meta/data_time', data_time)
                w.add_scalar('meta/iter_time', elapsed)

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]
                    if torch.cuda.is_available():
                        max_mem_mb = torch.cuda.max_memory_allocated(
                        ) / 1024.0 / 1024.0
                        # torch.cuda.reset_max_memory_allocated()
                    else:
                        max_mem_mb = None

                    logger.info("""\
eta: {eta}  epoch: {epoch}  iter: {iter}  \
{losses}  {loss_total}  \
time: {time}  data_time: {data_time}  lr: {lr}  {memory}\
""".format(eta=eta_str,
                    epoch=epoch,
                    iter=iteration,
                    losses="  ".join([
                    "{}: {:.3f}".format(k, loss_avgs[k].get_avg()) for k in losses
                    ]),
                    loss_total="T: {:.3f}".format(
                    sum([loss_avgs[k].get_avg() for k in losses])),
                    data_time="{:.3f}".format(data_time_avg.get_avg()),
                    time="{:.3f}".format(elapsed),
                    lr="{:.6f}".format(lr),
                    memory="max_mem: {:.0f}M".format(max_mem_mb)))

                if rank == 0 and iteration % 100 == 0:

                    if cfg.flow.train_flow:
                        import flowiz as fz
                        from layers.warp_utils import deform_op
                        tgt_size = (64, 64)
                        flow_size = flows.size()[2:]
                        vis_data = []
                        for pred_flow in net_outs:
                            vis_data.append(pred_flow)

                        deform_gt = deform_op(imgs_2, flows)
                        flows_pred = [
                            F.interpolate(x,
                                          size=flow_size,
                                          mode='bilinear',
                                          align_corners=False)
                            for x in net_outs
                        ]
                        deform_preds = [
                            deform_op(imgs_2, x) for x in flows_pred
                        ]

                        vis_data.append(
                            F.interpolate(flows, size=tgt_size, mode='area'))

                        vis_data = [
                            F.interpolate(flow[:1], size=tgt_size)
                            for flow in vis_data
                        ]
                        vis_data = [
                            fz.convert_from_flow(
                                flow[0].data.cpu().numpy().transpose(
                                    1, 2, 0)).transpose(
                                        2, 0, 1).astype('float32') / 255
                            for flow in vis_data
                        ]

                        def convert_image(image):
                            image = F.interpolate(image,
                                                  size=tgt_size,
                                                  mode='area')
                            image = image[0]
                            image = image.data.cpu().numpy()
                            image = image[::-1]
                            image = image.transpose(1, 2, 0)
                            image = image * np.array(STD) + np.array(MEANS)
                            image = image.transpose(2, 0, 1)
                            image = image / 255
                            image = np.clip(image, -1, 1)
                            image = image[::-1]
                            return image

                        vis_data.append(convert_image(imgs_1))
                        vis_data.append(convert_image(imgs_2))
                        vis_data.append(convert_image(deform_gt))
                        vis_data.extend(
                            [convert_image(x) for x in deform_preds])

                        vis_data_stack = np.stack(vis_data, axis=0)
                        w.add_images("preds_flow", vis_data_stack)

                    elif cfg.flow.warp_mode == "flow":
                        import flowiz as fz
                        tgt_size = (64, 64)
                        vis_data = []
                        for pred_flow, _, _ in net_outs["preds_flow"]:
                            vis_data.append(pred_flow)

                        vis_data = [
                            F.interpolate(flow[:1], size=tgt_size)
                            for flow in vis_data
                        ]
                        vis_data = [
                            fz.convert_from_flow(
                                flow[0].data.cpu().numpy().transpose(
                                    1, 2, 0)).transpose(
                                        2, 0, 1).astype('float32') / 255
                            for flow in vis_data
                        ]
                        input_image = F.interpolate(images,
                                                    size=tgt_size,
                                                    mode='area')
                        input_image = input_image[0]
                        input_image = input_image.data.cpu().numpy()
                        input_image = input_image.transpose(1, 2, 0)
                        input_image = input_image * np.array(
                            STD[::-1]) + np.array(MEANS[::-1])
                        input_image = input_image.transpose(2, 0, 1)
                        input_image = input_image / 255
                        input_image = np.clip(input_image, -1, 1)
                        vis_data.append(input_image)

                        vis_data_stack = np.stack(vis_data, axis=0)
                        w.add_images("preds_flow", vis_data_stack)

                iteration += 1
                w.set_step(iteration)

                if rank == 0 and iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    logger.info('Saving state, iter: {}'.format(iteration))
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            logger.info('Deleting old save...')
                            os.remove(latest)

            # This is done per epoch
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    if rank == 0:
                        compute_validation_map(yolact_net, val_dataset)
                    dist.barrier()

    except KeyboardInterrupt:
        if args.interrupt_no_save:
            logger.info('No save on interrupt, just exiting...')
        elif rank == 0:
            print('Stopping early. Saving network...')
            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            yolact_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        return

    if rank == 0:
        yolact_net.save_weights(save_path(epoch, iteration))
コード例 #3
0
cuda = False
if torch.cuda.is_available():
    cuda = True

weight_path = 'weights/yolact_edge_mobilenetv2_54_800000.pth'
image_path = 'images/demo.jpg'
result_path = 'results/demo.png'

model_path = SavePath.from_str(weight_path)
# TODO: Bad practice? Probably want to do a name lookup instead.
config = model_path.model_name + '_config'
print('Config not specified. Parsed %s from the file name.\n' % config)
set_cfg(config)

setup_logger(logging_level=logging.INFO)
logger = logging.getLogger("yolact.eval")

logger.info('Loading model...')
model = Yolact(training=False)
model.load_weights(weight_path, args=args)
model.eval()
logger.info('Model loaded.')

if cuda:
    model = model.cuda()
    logger.info('Predicting with gpu.')
else:
    logger.info('Predicting with cpu.')

predict(image_path,
コード例 #4
0
                        default=False,
                        action='store_true',
                        help='make plot with errorbars')
    parser.add_argument('-ne',
                        '--noerrorbars',
                        dest='errorbars',
                        action='store_false',
                        help='do not make plot with errorbars')
    parser.add_argument(
        '-l',
        '--errlevel',
        type=str,
        default='1.00',
        help='desired error level (has to be present in files)')
    parser.add_argument('-z',
                        '--zoom',
                        help='zoom into desired region',
                        default='')

    args = parser.parse_args()

    logger = setup_logger(level=args.loglevel)

    r.gROOT.SetBatch()
    r.gROOT.ProcessLine('gErrorIgnoreLevel = 1001')

    print(args.zoom)

    main(args.inputfiles, args.contour, args.errorbars, args.outbase,
         args.errlevel, args.zoom)