def pred_soft_argmax(labels_2D, heatmap, labels_res, patch_size=5, device="cuda"): """ return: dict {'loss': mean of difference btw pred and res} """ from utils.losses import norm_patches outs = {} # extract patches from utils.losses import extract_patches from utils.losses import soft_argmax_2d label_idx = labels_2D[...].nonzero().long() # patch_size = self.config['params']['patch_size'] patches = extract_patches( label_idx.to(device), heatmap.to(device), patch_size=patch_size ) # norm patches patches = norm_patches(patches) # predict offsets from utils.losses import do_log patches_log = do_log(patches) # soft_argmax dxdy = soft_argmax_2d( patches_log, normalized_coordinates=False ) # tensor [B, N, patch, patch] dxdy = dxdy.squeeze(1) # tensor [N, 2] dxdy = dxdy - patch_size // 2 # extract residual def ext_from_points(labels_res, points): """ input: labels_res: tensor [batch, channel, H, W] points: tensor [N, 4(pos0(batch), pos1(0), pos2(H), pos3(W) )] return: tensor [N, channel] """ labels_res = labels_res.transpose(1, 2).transpose(2, 3).unsqueeze(1) points_res = labels_res[ points[:, 0], points[:, 1], points[:, 2], points[:, 3], : ] # tensor [N, 2] return points_res points_res = ext_from_points(labels_res, label_idx) # loss outs["pred"] = dxdy outs["points_res"] = points_res # ls = lambda x, y: dxdy.cpu() - points_res.cpu() # outs['loss'] = dxdy.cpu() - points_res.cpu() outs["loss"] = dxdy.to(device) - points_res.to(device) outs["patches"] = patches return outs
def soft_argmax_points(self, pts, patch_size=5): """ input: pts: tensor [N x 2] """ from utils.utils import toNumpy from utils.losses import extract_patch_from_points from utils.losses import soft_argmax_2d from utils.losses import norm_patches ##### check not take care of batch ##### # print("not take care of batch! only take first element!") pts = pts[0].transpose().copy() patches = extract_patch_from_points(self.heatmap, pts, patch_size=patch_size) import torch patches = np.stack(patches) patches_torch = torch.tensor(patches, dtype=torch.float32).unsqueeze(0) # norm patches patches_torch = norm_patches(patches_torch) from utils.losses import do_log patches_torch = do_log(patches_torch) # patches_torch = do_log(patches_torch) # print("one tims of log!") # print("patches: ", patches_torch.shape) # print("pts: ", pts.shape) dxdy = soft_argmax_2d(patches_torch, normalized_coordinates=False) # print("dxdy: ", dxdy.shape) points = pts points[:, :2] = points[:, :2] + dxdy.numpy().squeeze( ) - patch_size // 2 self.patches = patches_torch.numpy().squeeze() self.pts_subpixel = [points.transpose().copy()] return self.pts_subpixel.copy()
def pred_soft_argmax(self, labels_2D, heatmap): """ return: dict {'loss': mean of difference btw pred and res} """ patch_size = self.patch_size device = self.device from utils.losses import norm_patches outs = {} # extract patches from utils.losses import extract_patches from utils.losses import soft_argmax_2d label_idx = labels_2D[...].nonzero() # patch_size = self.config['params']['patch_size'] patches = extract_patches(label_idx.to(device), heatmap.to(device), patch_size=patch_size) # norm patches # patches = norm_patches(patches) # predict offsets from utils.losses import do_log patches_log = do_log(patches) # soft_argmax dxdy = soft_argmax_2d( patches_log, normalized_coordinates=False) # tensor [B, N, patch, patch] dxdy = dxdy.squeeze(1) # tensor [N, 2] dxdy = dxdy - patch_size // 2 # loss outs['pred'] = dxdy # ls = lambda x, y: dxdy.cpu() - points_res.cpu() outs['patches'] = patches return outs