コード例 #1
0
    def pred_soft_argmax(labels_2D, heatmap, labels_res, patch_size=5, device="cuda"):
        """

        return:
            dict {'loss': mean of difference btw pred and res}
        """
        from utils.losses import norm_patches

        outs = {}
        # extract patches
        from utils.losses import extract_patches
        from utils.losses import soft_argmax_2d

        label_idx = labels_2D[...].nonzero().long()

        # patch_size = self.config['params']['patch_size']
        patches = extract_patches(
            label_idx.to(device), heatmap.to(device), patch_size=patch_size
        )
        # norm patches
        patches = norm_patches(patches)

        # predict offsets
        from utils.losses import do_log

        patches_log = do_log(patches)
        # soft_argmax
        dxdy = soft_argmax_2d(
            patches_log, normalized_coordinates=False
        )  # tensor [B, N, patch, patch]
        dxdy = dxdy.squeeze(1)  # tensor [N, 2]
        dxdy = dxdy - patch_size // 2

        # extract residual
        def ext_from_points(labels_res, points):
            """
            input:
                labels_res: tensor [batch, channel, H, W]
                points: tensor [N, 4(pos0(batch), pos1(0), pos2(H), pos3(W) )]
            return:
                tensor [N, channel]
            """
            labels_res = labels_res.transpose(1, 2).transpose(2, 3).unsqueeze(1)
            points_res = labels_res[
                points[:, 0], points[:, 1], points[:, 2], points[:, 3], :
            ]  # tensor [N, 2]
            return points_res

        points_res = ext_from_points(labels_res, label_idx)

        # loss
        outs["pred"] = dxdy
        outs["points_res"] = points_res
        # ls = lambda x, y: dxdy.cpu() - points_res.cpu()
        # outs['loss'] = dxdy.cpu() - points_res.cpu()
        outs["loss"] = dxdy.to(device) - points_res.to(device)
        outs["patches"] = patches
        return outs
コード例 #2
0
    def soft_argmax_points(self, pts, patch_size=5):
        """
        input:
            pts: tensor [N x 2]
        """
        from utils.utils import toNumpy
        from utils.losses import extract_patch_from_points
        from utils.losses import soft_argmax_2d
        from utils.losses import norm_patches

        ##### check not take care of batch #####
        # print("not take care of batch! only take first element!")
        pts = pts[0].transpose().copy()
        patches = extract_patch_from_points(self.heatmap,
                                            pts,
                                            patch_size=patch_size)
        import torch
        patches = np.stack(patches)
        patches_torch = torch.tensor(patches, dtype=torch.float32).unsqueeze(0)

        # norm patches
        patches_torch = norm_patches(patches_torch)

        from utils.losses import do_log
        patches_torch = do_log(patches_torch)
        # patches_torch = do_log(patches_torch)
        # print("one tims of log!")
        # print("patches: ", patches_torch.shape)
        # print("pts: ", pts.shape)

        dxdy = soft_argmax_2d(patches_torch, normalized_coordinates=False)
        # print("dxdy: ", dxdy.shape)
        points = pts
        points[:, :2] = points[:, :2] + dxdy.numpy().squeeze(
        ) - patch_size // 2
        self.patches = patches_torch.numpy().squeeze()
        self.pts_subpixel = [points.transpose().copy()]
        return self.pts_subpixel.copy()
コード例 #3
0
    def pred_soft_argmax(self, labels_2D, heatmap):
        """

        return:
            dict {'loss': mean of difference btw pred and res}
        """
        patch_size = self.patch_size
        device = self.device
        from utils.losses import norm_patches

        outs = {}
        # extract patches
        from utils.losses import extract_patches
        from utils.losses import soft_argmax_2d
        label_idx = labels_2D[...].nonzero()

        # patch_size = self.config['params']['patch_size']
        patches = extract_patches(label_idx.to(device),
                                  heatmap.to(device),
                                  patch_size=patch_size)
        # norm patches
        # patches = norm_patches(patches)

        # predict offsets
        from utils.losses import do_log
        patches_log = do_log(patches)
        # soft_argmax
        dxdy = soft_argmax_2d(
            patches_log,
            normalized_coordinates=False)  # tensor [B, N, patch, patch]
        dxdy = dxdy.squeeze(1)  # tensor [N, 2]
        dxdy = dxdy - patch_size // 2

        # loss
        outs['pred'] = dxdy
        # ls = lambda x, y: dxdy.cpu() - points_res.cpu()
        outs['patches'] = patches
        return outs