コード例 #1
0
def gen_coherent_noise(height,width):

    vs = np.linspace(-0.2, 0.2, num=width)
    px_1 = markov.FuzzyProgression(
        values=vs,
        positive_shifts=3, negative_shifts=3,
        repeat_factor=4)

    np.random.seed(120)
    values = []
    for i in range(3):
        mask = np.random.binomial(1, p=0.5, size=width // 10)
        vs = ['0', '1','2' ]
        pattern = ''.join([vs[i] for i in mask])
        print(pattern)
        values += [
            markov.SimplePattern(pattern=pattern, candidates=[-0.5,0,0.5])]

    black_white = markov.RandomMarkovModel(
        values=values,
        child_lengths=[width * i for i in range(1, 2)])
    varied = markov.SimpleProgression(
        values=[px_1],
        child_lengths=[width * i for i in range(10, 15)])
    parent = markov.RandomMarkovModel(
        values=[varied, black_white],
        child_lengths=[1, 2])

    img = markov.paint_linearly_markov_hierarchy(
        markov_tree=parent, width=width, height=height, seed=20)

    return img
コード例 #2
0
def generate_full_image(color_string, seed):
    r.init_def_generator(seed)

    image = np.zeros((HEIGHT, WIDTH, 3))
    plots = []
    loop_key = r.bind_generator()
    setup_key = r.bind_generator()

    post_process = lambda x: data.integrate_series(
        x, n=2, mean_influences=[0, 0])

    pup = m.SimpleProgression(values=1,
                              self_length=[10, 40, 50],
                              post_process=post_process)
    pdown = m.SimpleProgression(values=-1,
                                self_length=[10, 40, 50],
                                post_process=post_process)
    arc = m.RandomMarkovModel(values=[pup, pdown], self_length=[2])

    p = m.RandomMarkovModel(
        # values=[p1, p2, arc],
        values=[arc],
        parent_rkey=r.bind_generator_from(setup_key))

    # for i in range(-30,30):
    for i in range(1):

        sample = m.sample_markov_hierarchy(p, 1000)
        sample = data.integrate_series(sample, 1, mean_influences=1)
        # sample = data.integrate_series(sample,1,mean_influences=0)
        # sample -= np.min(sample)
        # sample = data.integrate_series(sample,1)

        # slices = [ np.s_[:50],np.s_[50:100], np.s_[100:] ]
        # for slice in slices:
        #     sample[slice] -= np.mean(sample[slice])
        # sample = data.integrate_series(sample,1)
        # sample[:60+i] -= np.mean(sample[:60+i])
        # sample[60+i:] -= np.mean(sample[60+i:])
        # sample = data.integrate_series(sample,1)
        plots += [sample]

    plt.plot(plots[0])
    mng = plt.get_current_fig_manager()
    mng.full_screen_toggle()
    plt.show()
    # viz.animate_plots_y(plots)

    return image
コード例 #3
0
        mask = mask[mask<NUM_CELLS]
        vls[mask] = np.random.choice([NUM_CELLS+1,NUM_CELLS+2,NUM_CELLS+3])
        lngts = pat['lengths']
        model = m.SimpleProgression(values=m.Processor(
            m.SimpleProgression(
                values=vls,
                lenghts=lngts,
                self_length=NUM_CELLS,
                start_probs=[0,1,2,3]),
            num_tiles=num_tiles),self_length=[5,10,15,20,25])
        pattern_models += [model]

    def update_fun(preference_matrix,start_probs):
        return preference_matrix,np.roll(start_probs,shift=1)
    parent = m.RandomMarkovModel(
        values=pattern_models,
        start_probs=0,
        update_fun=update_fun,update_step=1)

    img = gen_portion(
        parent,
        height=HEIGHT,width=WIDTH,
        tile_height=None,tile_width=None)

    final_img_prototype = data.upscale_nearest(img,UPSCALE_FACTOR)
    final_img = color.replace_indices_with_colors(final_img_prototype,COLOR_DICT).astype('uint8')
    if N==1:
        viz.start_color_editing_tool(
            blueprint=final_img_prototype,
            color_dict=COLOR_DICT,
            downsample=2)
    else:
コード例 #4
0
        p = [
            gen_patterns(current_tile_width,
                         num_segments,
                         current_colors,
                         min_length=2) for i in range(np.random.choice([2, 3]))
        ]
        print(p)
        p = [
            m.Processor(m.SimpleProgression(values=i['values'],
                                            lenghts=i['lengths'],
                                            self_length=num_segments,
                                            start_probs=0),
                        num_tiles=[2, 4, 5, 6, 8]) for i in p
        ]

        parent = m.RandomMarkovModel(values=p)

        img = gen_portion(parent,
                          height=portion_height,
                          width=WIDTH,
                          tile_height=current_tile_height,
                          tile_width=current_tile_width)

        portions += [img]
        print(img.shape)
        print(np.min(img))
        print(np.max(img))

    final_img_prototype = np.vstack(portions)
    final_img_prototype = final_img_prototype[:HEIGHT, :WIDTH]
    final_img_prototype = data.upscale_nearest(final_img_prototype,
コード例 #5
0
            np.random.choice(
                PATTERN_LENGTH,
                size=np.random.choice(PATTERN_LENGTH // 2 - 1) + 1,
                replace=False)) for i in range(30)
    ] + ['0' * PATTERN_LENGTH]

    patterns_white = [
        m.SimplePattern(pattern=i, candidates=[0, 1]) for i in patterns_white
    ]

    patterns_black = [
        m.SimplePattern(pattern=i, candidates=[0, 1]) for i in patterns_black
    ]

    row_patterns_white = [
        m.SimpleProgression(values=m.RandomMarkovModel(values=patterns_white,
                                                       child_lengths=[i]),
                            child_lengths=j)
        for (i, j) in [[50, 4], [100, 20], [200, 1]]
    ]

    row_patterns_white = m.RandomMarkovModel(values=row_patterns_white,
                                             child_lengths=5)

    row_patterns_black = [
        m.SimpleProgression(values=m.RandomMarkovModel(values=patterns_black,
                                                       child_lengths=[i]),
                            child_lengths=j)
        for (i, j) in [[50, 4], [100, 20], [200, 1]]
    ]

    row_patterns_black = m.RandomMarkovModel(values=row_patterns_black,
コード例 #6
0
            gen_all_possible_permutations('00212-00212', ['0', '1', '2']),
            gen_all_possible_permutations('01000-00220', ['0', '1', '2']),
            gen_all_possible_permutations('02200-00010', ['0', '1', '2']),
        ]

        pats = [j for i in pats for j in i]

        pats = [
            m.SimpleProgression(values=m.SimplePattern(pattern=i,
                                                       candidates=[0] +
                                                       [int(a), int(b)],
                                                       start_probs=0),
                                child_lengths=TILE_WIDTH) for i in pats
        ]

        pats = m.Processor(m.SimpleProgression(values=m.RandomMarkovModel(
            values=pats, child_lengths=1),
                                               child_lengths=TILE_HEIGHT),
                           num_tiles=TILING_OPTIONS)

        basic_tiles += [pats]

    basic_tiles = m.SimpleProgression(values=basic_tiles, child_lengths=1)

    r = [m.SimpleProgression(values=i) for i in [2, 3, 10, 11, 12]]
    random_tiles = m.Processor(m.SimpleProgression(
        values=m.RandomMarkovModel(values=r, child_lengths=[1, 2, 3, 4]),
        child_lengths=TILE_HEIGHT * TILE_WIDTH // 2),
                               num_tiles=1,
                               length_limit=TILE_HEIGHT * TILE_WIDTH)

    parent = m.RandomMarkovModel(values=[basic_tiles, random_tiles],
コード例 #7
0
        vs = '012'
        pattern = ''.join([vs[i] for i in mask])
        # if ending[i] == 1:
        #     pattern += '5'
        print(pattern)
        base_values += [
            markov.SimplePattern(pattern,
                                 lengths=lengths,
                                 candidates=[11, 12, 13]),
            markov.SimplePattern(pattern,
                                 lengths=lengths,
                                 candidates=[11, 12, 13])
        ]

    base = markov.Processor(markov.Processor(markov.RandomMarkovModel(
        values=base_values,
        child_lengths=[WIDTH // 10],
        seed=current_iteration * 50),
                                             num_tiles=[7]),
                            num_tiles=[4, 5])

    bg = [
        markov.Processor(markov.SimpleProgression(values=[i]),
                         num_tiles=WIDTH * 3) for i in [11, 13]
    ]

    bg = markov.RandomMarkovModel(values=bg, child_lengths=[1])

    pure = [
        markov.Processor(markov.SimpleProgression(values=[i]),
                         num_tiles=WIDTH // 10) for i in [1, 2, 3, 4, 5]
    ]