コード例 #1
0
    def __getitem__(self, idx):

        # BGR image
        filename = self.image_files[idx]
        print('filename = ', filename)
        im = cv2.imread(filename)
        if cfg.TRAIN.CHROMATIC and cfg.MODE == 'TRAIN' and np.random.rand(
                1) > 0.1:
            im = chromatic_transform(im)
        if cfg.TRAIN.ADD_NOISE and cfg.MODE == 'TRAIN' and np.random.rand(
                1) > 0.1:
            im = add_noise(im)
        im_tensor = torch.from_numpy(im) / 255.0

        im_tensor_bgr = im_tensor.clone()
        im_tensor_bgr = im_tensor_bgr.permute(2, 0, 1)

        im_tensor -= self._pixel_mean
        image_blob = im_tensor.permute(2, 0, 1)

        # Label
        labels_filename = filename.replace('image_color', 'annotation')
        foreground_labels = util_.imread_indexed(labels_filename)
        foreground_labels = self.process_label(foreground_labels)
        label_blob = torch.from_numpy(foreground_labels).unsqueeze(0)

        index = filename.find('OSD')
        sample = {
            'image_color': image_blob,
            'image_color_bgr': im_tensor_bgr,
            'label': label_blob,
            'filename': filename[index + 4:]
        }

        # Depth image
        if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD':
            pcd_filename = filename.replace('image_color', 'pcd')
            pcd_filename = pcd_filename.replace('png', 'pcd')
            print('pcd_filename = ', pcd_filename)
            pcloud = pcl.load(pcd_filename).to_array()
            pcloud[np.isnan(pcloud)] = 0
            xyz_img = pcloud.reshape((self._height, self._width, 3))
            depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1)
            sample['depth'] = depth_blob

        # # Depth image
        # if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD':
        #     pcd_filename = filename.replace('image_color', 'pcd')
        #     pcd_filename = pcd_filename.replace('png', 'pcd')

        #     # pcl replaced with open3d
        #     pcloud = o3d.io.read_point_cloud(pcd_filename)
        #     pcloud = np.asarray(pcloud)
        #     print(np.isnan(pcloud))
        #     pcloud[np.isnan(pcloud)] = 0
        #     xyz_img = pcloud.reshape((self._height, self._width, 3))
        #     depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1)
        #     sample['depth'] = depth_blob

        return sample
コード例 #2
0
    def __getitem__(self, idx):

        # BGR image
        filename = str(self.image_paths[idx])
        im = cv2.imread(filename)
        if cfg.TRAIN.CHROMATIC and cfg.MODE == 'TRAIN' and np.random.rand(
                1) > 0.1:
            im = chromatic_transform(im)
        if cfg.TRAIN.ADD_NOISE and cfg.MODE == 'TRAIN' and np.random.rand(
                1) > 0.1:
            im = add_noise(im)
        im_tensor = torch.from_numpy(im) / 255.0

        im_tensor_bgr = im_tensor.clone()
        im_tensor_bgr = im_tensor_bgr.permute(2, 0, 1)

        im_tensor -= self._pixel_mean
        image_blob = im_tensor.permute(2, 0, 1)

        # Label
        labels_filename = filename.replace('rgb', 'label')
        foreground_labels = util_.imread_indexed(labels_filename)
        # mask table as background
        foreground_labels[foreground_labels == 1] = 0
        if 'table' in labels_filename:
            foreground_labels[foreground_labels == 2] = 0
        foreground_labels = self.process_label(foreground_labels)
        label_blob = torch.from_numpy(foreground_labels).unsqueeze(0)

        index = filename.find('OCID')
        sample = {
            'image_color': image_blob,
            'image_color_bgr': im_tensor_bgr,
            'label': label_blob,
            'filename': filename[index + 5:]
        }

        # Depth image
        if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD':
            pcd_filename = filename.replace('rgb', 'pcd')
            pcd_filename = pcd_filename.replace('png', 'pcd')
            pcloud = pcl.load(pcd_filename).to_array()
            pcloud[np.isnan(pcloud)] = 0
            xyz_img = pcloud.reshape((self._height, self._width, 3))
            depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1)
            sample['depth'] = depth_blob

        return sample
コード例 #3
0
from transforms3d.quaternions import mat2quat, quat2mat
import _init_paths
from datasets import OCIDObject, OSDObject
import matplotlib.pyplot as plt
from utils import mask as util_

if __name__ == '__main__':
    dataset = OSDObject('test')
    num = dataset._size
    num_objects = []
    for i in range(num):

        filename = str(dataset.image_files[i])
        # labels_filename = filename.replace('rgb', 'label')
        labels_filename = filename.replace('image_color', 'annotation')

        foreground_labels = util_.imread_indexed(labels_filename)
        # mask table as background
        foreground_labels[foreground_labels == 1] = 0
        if 'table' in labels_filename:
            foreground_labels[foreground_labels == 2] = 0
        foreground_labels = dataset.process_label(foreground_labels)
        n = len(np.unique(foreground_labels)) - 1
        num_objects.append(n)
        print(labels_filename, n)

    nums = np.array(num_objects)
    print('min: %d' % (np.min(nums)))
    print('max: %d' % (np.max(nums)))
    print('mean: %f' % (np.mean(nums)))
コード例 #4
0
    def __getitem__(self, idx):

        # Get scene directory, crop dose not use background
        scene_idx = idx // self.NUM_VIEWS_PER_SCENE
        scene_dir = self.scene_dirs[scene_idx]

        # Get view number
        view_num = idx % self.NUM_VIEWS_PER_SCENE
        if cfg.TRAIN.SYN_CROP:
            view_num += 2

        # Label
        foreground_labels_filename = os.path.join(
            scene_dir, 'segmentation_%05d.png' % view_num)
        foreground_labels = util_.imread_indexed(foreground_labels_filename)
        # mask table as background
        foreground_labels[foreground_labels == 1] = 0
        foreground_labels = self.process_label(foreground_labels)

        # BGR image
        filename = os.path.join(scene_dir, 'rgb_%05d.jpeg' % view_num)
        im = cv2.imread(filename)

        if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD':
            # Depth image
            depth_img_filename = os.path.join(scene_dir,
                                              'depth_%05d.png' % view_num)
            depth_img = cv2.imread(
                depth_img_filename, cv2.IMREAD_ANYDEPTH
            )  # This reads a 16-bit single-channel image. Shape: [H x W]
            xyz_img = self.process_depth(depth_img)
        else:
            xyz_img = None

        # crop
        if cfg.TRAIN.SYN_CROP:
            im, foreground_labels, xyz_img = self.pad_crop_resize(
                im, foreground_labels, xyz_img)
            foreground_labels = self.process_label(foreground_labels)

        # sample labels
        if cfg.TRAIN.EMBEDDING_SAMPLING:
            foreground_labels = self.sample_pixels(
                foreground_labels, cfg.TRAIN.EMBEDDING_SAMPLING_NUM)

        label_blob = torch.from_numpy(foreground_labels).unsqueeze(0)
        sample = {'label': label_blob}

        if cfg.TRAIN.CHROMATIC and cfg.MODE == 'TRAIN' and np.random.rand(
                1) > 0.1:
            im = chromatic_transform(im)
        if cfg.TRAIN.ADD_NOISE and cfg.MODE == 'TRAIN' and np.random.rand(
                1) > 0.1:
            im = add_noise(im)
        im_tensor = torch.from_numpy(im) / 255.0
        im_tensor -= self._pixel_mean
        image_blob = im_tensor.permute(2, 0, 1)
        sample['image_color'] = image_blob

        if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD':
            depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1)
            sample['depth'] = depth_blob

        return sample
コード例 #5
0
    def __getitem__(self, idx):

        sample = self.data[idx]  # (idx: [rgb, d, seg])
        rgb_path = sample[0]
        depth_path = sample[1]
        segmentation_path = sample[2]

        # _, ax = plt.subplots(1, 3)
        # ax[0].imshow(rgb)
        # ax[1].imshow(depth)
        # ax[2].imshow(segmentation)
        # plt.show()

        foreground_labels_filename = segmentation_path
        foreground_labels = util_.imread_indexed(foreground_labels_filename)
        # mask table as background
        foreground_labels[foreground_labels == 1] = 0
        foreground_labels = self.process_label(foreground_labels)

        # BGR image
        filename = rgb_path
        im = cv2.imread(filename)

        if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD':
            # Depth image
            depth_img_filename = depth_path
            depth_img = cv2.imread(
                depth_img_filename, cv2.IMREAD_ANYDEPTH
            )  # This reads a 16-bit single-channel image. Shape: [H x W]
            xyz_img = self.process_depth(depth_img)
        else:
            xyz_img = None

        # crop
        if cfg.TRAIN.SYN_CROP:
            im, foreground_labels, xyz_img = self.pad_crop_resize(
                im, foreground_labels, xyz_img)
            foreground_labels = self.process_label(foreground_labels)

        # sample labels
        if cfg.TRAIN.EMBEDDING_SAMPLING:
            foreground_labels = self.sample_pixels(
                foreground_labels, cfg.TRAIN.EMBEDDING_SAMPLING_NUM)

        label_blob = torch.from_numpy(foreground_labels).unsqueeze(0)
        sample = {'label': label_blob}

        if cfg.TRAIN.CHROMATIC and cfg.MODE == 'TRAIN' and np.random.rand(
                1) > 0.1:
            im = chromatic_transform(im)
        if cfg.TRAIN.ADD_NOISE and cfg.MODE == 'TRAIN' and np.random.rand(
                1) > 0.1:
            im = add_noise(im)

        im_tensor = torch.from_numpy(im) / 255.0
        im_tensor -= self._pixel_mean
        image_blob = im_tensor.permute(2, 0, 1)
        sample['image_color'] = image_blob

        if cfg.INPUT == 'DEPTH' or cfg.INPUT == 'RGBD':
            depth_blob = torch.from_numpy(xyz_img).permute(2, 0, 1)
            sample['depth'] = depth_blob

        return sample