def __init__(self): # ID and Name self.id = 601 self.experiment_name = "ma_cotr_v{}".format(self.id) self.debug = False # System self.checkpointsBasePath = "./checkpoints/" self.checkpointsBasePathMod = self.checkpointsBasePath + 'models/' # self.labelpath = "/local/DEEPLEARNING/MULTI_ATLAS/multi_atlas//512_512_256/" self.labelpath = '/local/DEEPLEARNING/VP_multiorgan_v2/' self.datapath = self.labelpath self.input_shape = [512,512,256] # filters = [4, 8, 16, 32] # skip_idx = [1,3,5,6] # self.patch_size=(128,128,128) self.patch_size=(192,192,48) # n_layers=6 self.clip = True self.patched = True # GPU self.gpu = '0' os.environ["CUDA_VISIBLE_DEVICES"] = self.gpu # Model self.n_classes = 8 self.net = ResTranUnet(norm_cfg='IN', activation_cfg='LeakyReLU', img_size=self.patch_size, num_classes=self.n_classes, weight_std=False, deep_supervision=True) self.net.inference_apply_nonlin = softmax_helper self.n_parameters = count_parameters(self.net) print("N PARAMS : {}".format(self.n_parameters)) self.model_path = './checkpoints/models/vp_cotr.pth' # self.model_path = './checkpoints/models/403/mod.pt' max_displacement = 5,5,5 deg = (0,5,10) scales = 0 self.transform = tio.Compose([ tio.RandomElasticDeformation(max_displacement=max_displacement), tio.RandomAffine(scales=scales, degrees=deg) ]) # Training self.start_epoch = 0 self.epoch = 1000 # self.loss = torch.nn.CrossEntropyLoss() self.loss = DC_and_CE_loss({'batch_dice': True, 'smooth': 1e-5, 'do_bg': False}, {}) self.ds_scales = ((1, 1, 1), (0.5, 0.5, 1), (0.25, 0.25, 0.5)) ################# Here we wrap the loss for deep supervision ############ # we need to know the number of outputs of the network net_numpool = 4 # we give each output a weight which decreases exponentially (division by 2) as the resolution decreases # this gives higher resolution outputs more weight in the loss weights = np.array([1 / (2 ** i) for i in range(net_numpool)]) # we don't use the lowest 2 outputs. Normalize weights so that they sum to 1 mask = np.array([True] + [True if i < net_numpool - 1 else False for i in range(1, net_numpool)]) weights[~mask] = 0 weights = weights / weights.sum() self.ds_loss_weights = weights # now wrap the loss self.loss = MultipleOutputLoss2(self.loss, self.ds_loss_weights) ################# END ################### self.batchsize = 2 self.lr_rate = 2e-2 # self.final_lr_rate = 1e-5 # self.optimizer = optim.Adam(self.net.parameters(), lr = self.lr_rate) self.optimizer = optim.SGD(self.net.parameters(), lr = self.lr_rate, weight_decay=3e-5, momentum=0.99) self.optimizer.zero_grad() self.validate_every_k_epochs = 10 # self.decay = (self.lr_rate/self.final_lr_rate - 1)/self.epoch self.lr_scheduler = get_scheduler(self.optimizer, "poly", self.lr_rate, max_epochs=self.epoch) self.load_model() # Other self.classes_name = ["Background", "Liver","Gallbladder","Spleen","Left_Kidney","Right_Kidney","Pancreas","Stomach"]
def __init__(self): # ID and Name self.id = "506b95" self.experiment_name = "ma_crosstr_v{}".format(self.id) self.debug = False # System self.checkpointsBasePath = "./checkpoints/" self.checkpointsBasePathMod = self.checkpointsBasePath + 'models/' self.labelpath = '/local/DEEPLEARNING/MULTI_ATLAS/MULTI_ATLAS/nnUNet_preprocessed/Task017_BCV/nnUNetData_plans_v2.1_stage1/' self.datapath = self.labelpath self.input_shape = [512,512,256] # self.filters = [16, 32, 64, 128] # self.filters = [64, 192, 448, 704] # self.filters = [16, 32, 64, 128, 256] self.filters = [32, 64, 128, 256, 512] d_model = self.filters[-1] # skip_idx = [1,3,5,6] # self.patch_size=(128,128,128) self.patch_size=(192,192,48) # n_layers=6 self.clip = False self.patched = True # GPU self.gpu = '1' os.environ["CUDA_VISIBLE_DEVICES"] = self.gpu # torch.backends.cudnn.benchmark = False # Model number_of_cross_heads = 8 number_of_self_heads = 8 number_of_self_layer = 6 self.n_classes = 14 self.net = CrossPatch3DTr(filters=self.filters,patch_size=[1,1,1], d_model=d_model,n_classes=self.n_classes, n_cheads=1,n_sheads=number_of_self_heads, bn=True,up_mode='deconv', n_strans=number_of_self_layer, do_cross=True, enc_grad=False) self.net.inference_apply_nonlin = softmax_helper self.n_parameters = count_parameters(self.net) print("N PARAMS : {}".format(self.n_parameters)) # self.model_path = './checkpoints/models/deep_crosstr.pth' self.model_path = './checkpoints/models/506/modlast.pt' max_displacement = 5,5,5 deg = (0,5,10) scales = 0 self.transform = tio.Compose([ tio.RandomElasticDeformation(max_displacement=max_displacement), tio.RandomAffine(scales=scales, degrees=deg) ]) # Training self.start_epoch = 1000 self.epoch = 2000 # self.loss = torch.nn.CrossEntropyLoss() self.loss = DC_and_CE_loss({'batch_dice': True, 'smooth': 1e-5, 'do_bg': False}, {}) self.ds_scales = ((1, 1, 1), (0.5, 0.5, 0.5), (0.25, 0.25, 0.25), (0.125,0.125,0.125)) ################# Here we wrap the loss for deep supervision ############ # we need to know the number of outputs of the network net_numpool = 4 # we give each output a weight which decreases exponentially (division by 2) as the resolution decreases # this gives higher resolution outputs more weight in the loss weights = np.array([1 / (2 ** i) for i in range(net_numpool)]) # we don't use the lowest 2 outputs. Normalize weights so that they sum to 1 mask = np.array([True] + [True if i < net_numpool - 1 else False for i in range(1, net_numpool)]) weights[~mask] = 0 weights = weights / weights.sum() self.ds_loss_weights = weights # now wrap the loss self.loss = MultipleOutputLoss2(self.loss, self.ds_loss_weights) ################# END ################### self.batchsize = 2 self.lr_rate = 1e-3 self.load_lr = False self.load_model() self.net.reinit_decoder() self.net.reinit_crostrans(dim=d_model, depth=1, heads=number_of_cross_heads, dim_head=1024, mlp_dim=1024, dropout = 0.1) self.optimizer = optim.SGD(self.net.parameters(), lr = self.lr_rate, weight_decay=3e-5, momentum=0.99, nesterov=True) self.optimizer.zero_grad() self.validate_every_k_epochs = 1 # self.decay = (self.lr_rate/self.final_lr_rate - 1)/self.epoch self.lr_scheduler = get_scheduler(self.optimizer, "poly", self.lr_rate, max_epochs=self.epoch) # Other self.classes_name = ['background','spleen','right kidney','left kidney','gallbladder','esophagus','liver','stomach','aorta','inferior vena cava','portal vein and splenic vein','pancreas','right adrenal gland','left adrenal gland']
def __init__(self): # ID and Name self.id = -1 self.experiment_name = "ma_cotr_pred_v{}".format(self.id) self.debug = False # System self.checkpointsBasePath = "./checkpoints/" self.checkpointsBasePathMod = self.checkpointsBasePath + 'models/' self.labelpath = "/local/DEEPLEARNING/MULTI_ATLAS/multi_atlas//512_512_256/" self.datapath = self.labelpath self.input_shape = [512,512,256] # filters = [4, 8, 16, 32] # skip_idx = [1,3,5,6] self.patch_size=(128,128,128) # self.patch_size=(192,192,48) # n_layers=6 self.clip = True self.patched = True # GPU self.gpu = '0' os.environ["CUDA_VISIBLE_DEVICES"] = self.gpu # Model self.n_classes = 14 self.net = ResTranUnet(norm_cfg='IN', activation_cfg='LeakyReLU', img_size=self.patch_size, num_classes=self.n_classes, weight_std=False, deep_supervision=False) self.net.inference_apply_nonlin = softmax_helper self.n_parameters = count_parameters(self.net) print("N PARAMS : {}".format(self.n_parameters)) # self.model_path = './checkpoints/models/cotr.pth' self.model_path = './checkpoints/models/400/mod.pt' max_displacement = 5,5,5 deg = (0,5,10) scales = 0 self.transform = tio.Compose([ tio.RandomElasticDeformation(max_displacement=max_displacement), tio.RandomAffine(scales=scales, degrees=deg) ]) # Training self.start_epoch = 1000 self.epoch = 1000 self.loss = torch.nn.CrossEntropyLoss() self.loss = DC_and_CE_loss({'batch_dice': True, 'smooth': 1e-5, 'do_bg': False}, {}) self.batchsize = 2 self.lr_rate = 2e-2 # self.final_lr_rate = 1e-5 # self.optimizer = optim.Adam(self.net.parameters(), lr = self.lr_rate) self.optimizer = optim.SGD(self.net.parameters(), lr = self.lr_rate, weight_decay=3e-5, momentum=0.99) self.optimizer.zero_grad() self.validate_every_k_epochs = 10 # self.decay = (self.lr_rate/self.final_lr_rate - 1)/self.epoch self.lr_scheduler = get_scheduler(self.optimizer, "poly", self.lr_rate, max_epochs=self.epoch) self.load_model() # Other self.classes_name = ['background','spleen','right kidney','left kidney','gallbladder','esophagus','liver','stomach','aorta','inferior vena cava','portal vein and splenic vein','pancreas','right adrenal gland','left adrenal gland']