コード例 #1
0
    def forward(self, outputs, targets):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {
            k: v
            for k, v in outputs.items() if k != 'aux_outputs'
        }

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes = sum(len(t["labels"]) for t in targets)
        num_boxes = torch.as_tensor([num_boxes],
                                    dtype=torch.float,
                                    device=next(iter(outputs.values())).device)

        # For Distributed Computation
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_boxes)
        num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(
                self.get_loss(loss, outputs, targets, indices, num_boxes))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    if loss == 'masks':
                        # Intermediate masks losses are too costly to compute, we ignore them.
                        continue
                    kwargs = {}
                    if loss == 'labels':
                        # Logging is enabled only for the last layer
                        kwargs = {'log': False}
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices,
                                           num_boxes, **kwargs)
                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses
コード例 #2
0
def make_train_data_loader(datasets, is_distributed=False, start_iter=0):
    num_gpus = get_world_size()
    ims_per_gpu = int(cfg.TRAIN.BATCH_SIZE / num_gpus)
    shuffle = True
    num_iters = cfg.SOLVER.MAX_ITER

    # group images which have similar aspect ratio. In this case, we only
    # group in two cases: those with width / height > 1, and the other way around,
    # but the code supports more general grouping strategy
    aspect_grouping = [1] if cfg.DATALOADER.ASPECT_RATIO_GROUPING else []

    sampler = make_data_sampler(datasets, shuffle, is_distributed)
    batch_sampler = make_batch_data_sampler(datasets, sampler, aspect_grouping,
                                            ims_per_gpu, num_iters, start_iter)
    collator = BatchCollator(cfg.TRAIN.SIZE_DIVISIBILITY)
    num_workers = cfg.TRAIN.LOADER_THREADS
    data_loader = torch.utils.data.DataLoader(
        datasets,
        num_workers=num_workers,
        batch_sampler=batch_sampler,
        collate_fn=collator,
    )

    return data_loader
コード例 #3
0
ファイル: batch_norm.py プロジェクト: soeaver/Hier-R-CNN
    def forward(self, input):
        if get_world_size() == 1 or not self.training:
            return super().forward(input)

        assert input.shape[0] > 0, "SyncBatchNorm does not support empty inputs"
        C = input.shape[1]
        mean = torch.mean(input, dim=[0, 2, 3])
        meansqr = torch.mean(input * input, dim=[0, 2, 3])

        vec = torch.cat([mean, meansqr], dim=0)
        vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())

        mean, meansqr = torch.split(vec, C)
        var = meansqr - mean * mean
        self.running_mean += self.momentum * (mean.detach() -
                                              self.running_mean)
        self.running_var += self.momentum * (var.detach() - self.running_var)

        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1, 1)
        bias = bias.reshape(1, -1, 1, 1)
        return input * scale + bias