コード例 #1
0
def columnize(names, tuples, widths, indent=2):
    """Generate and return the content of table
    (w/o logging or printing anything)

    Args:
        width (int): Width of each cell in the table
        indent (int): Indentation spacing prepended to every row in the table
    """
    indent_space = indent * ' '
    # Add row containing the names
    table = indent_space + " | ".join(cell(name, width) for name, width in zipsame(names, widths))
    table_width = len(table)
    # Add header hline
    table += '\n' + indent_space + ('-' * table_width)
    for tuple_ in tuples:
        # Add a new row
        table += '\n' + indent_space
        table += " | ".join(cell(value, width) for value, width in zipsame(tuple_, widths))
    # Add closing hline
    table += '\n' + indent_space + ('-' * table_width)
    return table
コード例 #2
0
 def log_module_info(self, *components):
     assert len(components) > 0, "components list is empty"
     for component in components:
         logger.info("logging {}/{} specs".format(self.name,
                                                  component.name))
         names = [var.name for var in component.trainable_vars]
         shapes = [U.var_shape(var) for var in component.trainable_vars]
         num_paramss = [U.numel(var) for var in component.trainable_vars]
         zipped_info = zipsame(names, shapes, num_paramss)
         logger.info(
             columnize(names=['name', 'shape', 'num_params'],
                       tuples=zipped_info,
                       widths=[36, 16, 10]))
         logger.info("  total num params: {}".format(sum(num_paramss)))
コード例 #3
0
def flatgrad(loss, var_list, clip_norm=None):
    """Returns a list of sum(dy/dx) for each x in `var_list`
    Clipping is done by global norm (paper: https://arxiv.org/abs/1211.5063)
    """
    grads = tf.gradients(loss, var_list)
    if clip_norm is not None:
        grads, _ = tf.clip_by_global_norm(grads, clip_norm=clip_norm)
    vars_and_grads = zipsame(var_list, grads)  # zip with extra security
    for index, (var, grad) in enumerate(vars_and_grads):
        # If the gradient gets stopped for some obsure reason, set the grad as zero vector
        _grad = grad if grad is not None else tf.zeros_like(var)
        # Reshape the grad into a vector
        grads[index] = tf.reshape(_grad, [numel(var)])
    # return tf.concat(grads, axis=0)
    return tf.concat(grads, axis=0)
コード例 #4
0
def learn(env,
          policy_func,
          reward_giver,
          reward_guidance,
          expert_dataset,
          rank,
          pretrained,
          pretrained_weight,
          *,
          g_step,
          d_step,
          entcoeff,
          save_per_iter,
          ckpt_dir,
          log_dir,
          timesteps_per_batch,
          task_name,
          gamma,
          lam,
          algo,
          max_kl,
          cg_iters,
          cg_damping=1e-2,
          vf_stepsize=3e-4,
          d_stepsize=1e-4,
          vf_iters=3,
          max_timesteps=0,
          max_episodes=0,
          max_iters=0,
          loss_percent=0.0,
          callback=None):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    policy = build_policy(env, 'mlp', value_network='copy')

    ob = observation_placeholder(ob_space)
    with tf.variable_scope('pi'):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope('oldpi'):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables('pi')
    # var_list = [v for v in all_var_list if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")]
    # vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")
    # assert len(var_list) == len(vf_var_list) + 1
    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    guidance_adam = MpiAdam(reward_guidance.get_trainable_variables())

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables('oldpi'), get_variables('pi'))
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    guidance_adam.sync()
    vfadam.sync()
    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     reward_giver,
                                     reward_guidance,
                                     timesteps_per_batch,
                                     stochastic=True,
                                     algo=algo,
                                     loss_percent=loss_percent)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(reward_giver.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_state(pretrained_weight, var_list=pi.get_variables())

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            fname = os.path.join(ckpt_dir, task_name)
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname)

        logger.log("********** Iteration %i ************" % iters_so_far)

        # global flag_render
        # if iters_so_far > 0 and iters_so_far % 10 ==0:
        #     flag_render = True
        # else:
        #     flag_render = False

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            print('rewards', seg['rew'])
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, reward_giver.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(
            batch_size=len(ob))
        batch_size = 128
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        with timed("Discriminator"):
            for (ob_batch, ac_batch) in dataset.iterbatches(
                (ob, ac),
                    include_final_partial_batch=False,
                    batch_size=batch_size):
                ob_expert, ac_expert = expert_dataset.get_next_batch(
                    batch_size=batch_size)
                # update running mean/std for reward_giver
                if hasattr(reward_giver, "obs_rms"):
                    reward_giver.obs_rms.update(
                        np.concatenate((ob_batch, ob_expert), 0))
                *newlosses, g = reward_giver.lossandgrad(ob_batch, ob_expert)
                d_adam.update(allmean(g), d_stepsize)
                d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        # ------------------ Update Guidance ------------
        logger.log("Optimizing Guidance...")

        logger.log(fmt_row(13, reward_guidance.loss_name))
        batch_size = 128
        guidance_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        with timed("Guidance"):
            for ob_batch, ac_batch in dataset.iterbatches(
                (ob, ac),
                    include_final_partial_batch=False,
                    batch_size=batch_size):
                ob_expert, ac_expert = expert_dataset.get_next_batch(
                    batch_size=batch_size)

                idx_condition = process_expert(ob_expert, ac_expert)
                pick_idx = (idx_condition >= loss_percent)
                # pick_idx = idx_condition

                ob_expert_p = ob_expert[pick_idx]
                ac_expert_p = ac_expert[pick_idx]

                ac_batch_p = []
                for each_ob in ob_expert_p:
                    tmp_ac, _, _, _ = pi.step(each_ob, stochastic=True)
                    ac_batch_p.append(tmp_ac)

                # update running mean/std for reward_giver
                if hasattr(reward_guidance, "obs_rms"):
                    reward_guidance.obs_rms.update(ob_expert_p)
                # reward_guidance.train(expert_s=ob_batch_p, agent_a=ac_batch_p, expert_a=ac_expert_p)
                *newlosses, g = reward_guidance.lossandgrad(
                    ob_expert_p, ac_batch_p, ac_expert_p)
                guidance_adam.update(allmean(g), d_stepsize)
                guidance_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(guidance_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens) * g_step
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()