コード例 #1
0
import argparse
import os
import random
import sys

# import matplotlib.image as mpimg
import numpy as np
import tensorflow as tf

import inference
import train
from utils import evaluation_utils
from utils import misc_utils as utils
from utils import vocab_utils

utils.check_tensorflow_version()

FLAGS = None


def add_arguments(parser):
    """Build ArgumentParser."""
    parser.register("type", "bool", lambda v: v.lower() == "true")

    # network
    parser.add_argument("--num_units",
                        type=int,
                        default=32,
                        help="Network size.")
    parser.add_argument("--num_layers",
                        type=int,
コード例 #2
0
Created by Tudor Paraschivescu for the Cambridge UROP project
"Dialogue systems for language learning"

The hierarchical model with dynamic RNN support."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
from chatbot.models.base_model import BaseModel

import utils.misc_utils as utils
from chatbot.models import model_helper

utils.check_tensorflow_version(version="1.3.0")


class HierarchicalModel(BaseModel):
    """
    Sequence-to-sequence hierarchical model.

    This class implements a multi-layer recurrent neural network as encoder,
    a multi-layer recurrent neural network as a context encoder
    and a multi-layer recurrent neural network decoder.
    """

    def _build_encoder(self, hparams):
        """Build an encoder"""
        encoder_num_layers = hparams.num_layers
        encoder_num_residual_layers = hparams.num_residual_layers