コード例 #1
0
def train(env, agent, args):
    monitor = Monitor(train=True, spec="-{}".format(args.method))
    monitor.init_log(
        args.log, "m.{}_e.{}_n.{}".format(args.model, args.env_name,
                                          args.name))
    env.reset()
    for num_eps in range(args.episode_num):
        terminal = False
        env.reset()
        loss = 0
        cnt = 0
        tot_reward = 0

        probe = None
        if args.env_name == "dst":
            probe = FloatTensor([0.8, 0.2])
        elif args.env_name in ['ft', 'ft5', 'ft7']:
            probe = FloatTensor([0.8, 0.2, 0.0, 0.0, 0.0, 0.0])

        while not terminal:
            state = env.observe()
            action = agent.act(state)
            next_state, reward, terminal = env.step(action)
            if args.log:
                monitor.add_log(state, action, reward, terminal, agent.w_kept)
            agent.memorize(state, action, next_state, reward, terminal)
            loss += agent.learn()
            if cnt > 100:
                terminal = True
                agent.reset()
            tot_reward = tot_reward + (
                probe.cpu().numpy().dot(reward)) * np.power(args.gamma, cnt)
            cnt = cnt + 1

        _, q = agent.predict(probe)

        if args.env_name == "dst":
            act_1 = q[0, 3]
            act_2 = q[0, 1]
        elif args.env_name in ['ft', 'ft5', 'ft7']:
            act_1 = q[0, 1]
            act_2 = q[0, 0]

        if args.method == "crl-naive":
            act_1 = act_1.data.cpu()
            act_2 = act_2.data.cpu()
        elif args.method == "crl-envelope":
            act_1 = probe.dot(act_1.data)
            act_2 = probe.dot(act_2.data)
        elif args.method == "crl-energy":
            act_1 = probe.dot(act_1.data)
            act_2 = probe.dot(act_2.data)
        print(
            "end of eps %d with total reward (1) %0.2f, the Q is %0.2f | %0.2f; loss: %0.4f"
            % (
                num_eps,
                tot_reward,
                act_1,
                act_2,
                # q__max,
                loss / cnt))
        monitor.update(
            num_eps,
            tot_reward,
            act_1,
            act_2,
            #    q__max,
            loss / cnt)
    if num_eps + 1 % 500 == 0:
        agent.save(
            args.save, "m.{}_e.{}_n.{}".format(args.model, args.env_name,
                                               args.name))
コード例 #2
0
ファイル: MORLPolicy.py プロジェクト: zhenchangXia/MORL
class MORLPolicy(Policy.Policy):
    '''Derived from :class:`Policy`
    '''
    def __init__(self,
                 in_policy_file,
                 out_policy_file,
                 domainString='CamRestaurants',
                 is_training=False,
                 action_names=None):
        super(MORLPolicy, self).__init__(domainString, is_training)

        self.domainString = domainString
        self.domainUtil = FlatOnt.FlatDomainOntology(self.domainString)
        self.in_policy_file = in_policy_file
        self.out_policy_file = out_policy_file
        self.is_training = is_training
        self.accum_belief = []

        self.domainUtil = FlatOnt.FlatDomainOntology(self.domainString)
        self.prev_state_check = None

        # parameter settings
        if 0:  # cfg.has_option('morlpolicy', 'n_in'): #ic304: this was giving me a weird error, disabled it until i can check it deeper
            self.n_in = cfg.getint('morlpolicy', 'n_in')
        else:
            self.n_in = self.get_n_in(domainString)

        self.n_rew = 1
        if cfg.has_option('morlpolicy', 'n_rew'):
            self.n_rew = cfg.getint('morlpolicy', 'n_rew')

        self.lr = 0.001
        if cfg.has_option('morlpolicy', 'learning_rate'):
            self.lr = cfg.getfloat('morlpolicy', 'learning_rate')

        self.epsilon = 0.5
        if cfg.has_option('morlpolicy', 'epsilon'):
            self.epsilon = cfg.getfloat('morlpolicy', 'epsilon')

        self.epsilon_decay = True
        if cfg.has_option('morlpolicy', 'epsilon_decay'):
            self.epsilon_decay = cfg.getboolean('morlpolicy', 'epsilon_decay')

        self.randomseed = 1234
        if cfg.has_option('GENERAL', 'seed'):
            self.randomseed = cfg.getint('GENERAL', 'seed')

        self.gamma = 1.0
        if cfg.has_option('morlpolicy', 'gamma'):
            self.gamma = cfg.getfloat('morlpolicy', 'gamma')

        self.weight_num = 32
        if cfg.has_option('morlpolicy', 'weight_num'):
            self.weight_num = cfg.getint('morlpolicy', 'weight_num')

        self.episode_num = 1000
        if cfg.has_option('morlpolicy', 'episode_num'):
            self.episode_num = cfg.getfloat('morlpolicy', 'episode_num')

        self.optimizer = "Adam"
        if cfg.has_option('morlpolicy', 'optimizer'):
            self.optimizer = cfg.get('morlpolicy', 'optimizer')

        self.save_step = 100
        if cfg.has_option('policy', 'save_step'):
            self.save_step = cfg.getint('policy', 'save_step')

        self.update_freq = 50
        if cfg.has_option('morlpolicy', 'update_freq'):
            self.update_freq = cfg.getint('morlpolicy', 'update_freq')

        self.policyfeatures = []
        if cfg.has_option('morlpolicy', 'features'):
            logger.info('Features: ' + str(cfg.get('morlpolicy', 'features')))
            self.policyfeatures = json.loads(cfg.get('morlpolicy', 'features'))

        self.algorithm = 'naive'
        if cfg.has_option('morlpolicy', 'algorithm'):
            self.algorithm = cfg.get('morlpolicy', 'algorithm')
            logger.info('Learning algorithm: ' + self.algorithm)

        self.batch_size = 32
        if cfg.has_option('morlpolicy', 'batch_size'):
            self.batch_size = cfg.getint('morlpolicy', 'batch_size')

        self.mem_size = 1000
        if cfg.has_option('morlpolicy', 'mem_size'):
            self.mem_size = cfg.getint('morlpolicy', 'mem_size')

        self.training_freq = 1
        if cfg.has_option('morlpolicy', 'training_freq'):
            self.training_freq = cfg.getint('morlpolicy', 'training_freq')

        # set beta for envelope algorithm
        self.beta = 0.1
        if cfg.has_option('morlpolicy', 'beta'):
            self.beta = cfg.getfloat('morlpolicy', 'beta')
        self.beta_init = self.beta
        self.beta_uplim = 1.00
        self.tau = 1000.
        self.beta_expbase = float(
            np.power(self.tau * (self.beta_uplim - self.beta),
                     1. / (self.episode_num + 1)))
        self.beta_delta = self.beta_expbase / self.tau
        self.beta -= self.beta_delta

        # using homotopy method for optimization
        self.homotopy = False
        if cfg.has_option('morlpolicy', 'homotopy'):
            self.homotopy = cfg.getboolean('morlpolicy', 'homotopy')

        self.epsilon_delta = (self.epsilon - 0.05) / self.episode_num

        self.episodecount = 0

        # construct the models
        self.state_dim = self.n_in
        self.summaryaction = SummaryAction.SummaryAction(domainString)
        if action_names is None:
            self.action_names = self.summaryaction.action_names
        else:
            self.action_names = action_names
        self.action_dim = len(self.action_names)
        self.stats = [0 for _ in range(self.action_dim)]
        self.reward_dim = self.n_rew

        model = None
        if self.algorithm == 'naive':
            model = naive.NaiveLinearCQN(self.state_dim, self.action_dim,
                                         self.reward_dim)
        elif self.algorithm == 'envelope':
            model = envelope.EnvelopeLinearCQN(self.state_dim, self.action_dim,
                                               self.reward_dim)

        self.model_ = model
        self.model = copy.deepcopy(model)

        # initialize memory
        self.trans_mem = deque()
        self.trans = namedtuple('trans',
                                ['s', 'a', 's_', 'r', 'd', 'ms', 'ms_'])
        self.priority_mem = deque()
        self.mem_last_state = None
        self.mem_last_action = None
        self.mem_last_mask = None
        self.mem_cur_state = None
        self.mem_cur_action = None
        self.mem_cur_mask = None

        if self.optimizer == 'Adam':
            self.optimizer = optim.Adam(self.model_.parameters(), lr=self.lr)
        elif self.optimizer == 'RMSprop':
            self.optimizer = optim.RMSprop(self.model_.parameters(),
                                           lr=self.lr)

        try:
            self.loadPolicy(self.in_policy_file)
        except:
            logger.info("No previous model found...")

        self.w_kept = None
        self.update_count = 0
        if self.is_training:
            self.model_.train()
        if use_cuda:
            self.model.cuda()
            self.model_.cuda()

        self.monitor = None

    def get_n_in(self, domain_string):
        if domain_string == 'CamRestaurants':
            return 268
        elif domain_string == 'CamHotels':
            return 111
        elif domain_string == 'SFRestaurants':
            return 636
        elif domain_string == 'SFHotels':
            return 438
        elif domain_string == 'Laptops6':
            return 268  # ic340: this is wrong
        elif domain_string == 'Laptops11':
            return 257
        elif domain_string is 'TV':
            return 188
        else:
            print 'DOMAIN {} SIZE NOT SPECIFIED, PLEASE DEFINE n_in'.format(
                domain_string)

    def act_on(self, state, preference=None):
        if self.lastSystemAction is None and self.startwithhello:
            systemAct, nextaIdex = 'hello()', -1
        else:
            systemAct, nextaIdex = self.nextAction(state, preference)
        self.lastSystemAction = systemAct
        self.summaryAct = nextaIdex
        self.prevbelief = state

        systemAct = DiaAct.DiaAct(systemAct)
        return systemAct

    def record(self,
               reward,
               domainInControl=None,
               weight=None,
               state=None,
               action=None):
        if domainInControl is None:
            domainInControl = self.domainString
        if self.actToBeRecorded is None:
            self.actToBeRecorded = self.summaryAct

        if state is None:
            state = self.prevbelief
        if action is None:
            action = self.actToBeRecorded
        cState, cAction = self.convertStateAction(state, action)

        execMask = self.summaryaction.getExecutableMask(state, cAction)
        execMask = torch.Tensor(execMask).type(FloatTensor)

        # # normalising total return to -1~1
        # reward /= 20.0

        self.mem_last_state = self.mem_cur_state
        self.mem_last_action = self.mem_cur_action
        self.mem_last_mask = self.mem_cur_mask
        self.mem_cur_state = np.vstack(
            [np.expand_dims(x, 0) for x in [cState]])
        # self.mem_cur_action = np.eye(self.action_dim, self.action_dim)[[cAction]]
        self.mem_cur_action = cAction
        self.mem_cur_mask = execMask

        state = self.mem_last_state
        action = self.mem_last_action
        next_state = self.mem_cur_state
        terminal = False

        if state is not None and action is not None:
            self.trans_mem.append(
                self.trans(
                    torch.from_numpy(state).type(FloatTensor),  # state
                    action,  # action
                    torch.from_numpy(next_state).type(
                        FloatTensor),  # next state
                    torch.from_numpy(reward).type(FloatTensor),  # reward
                    terminal,  # terminal
                    self.mem_last_mask,  # action mask
                    self.mem_cur_mask))  # next action mask

            # randomly produce a preference for calculating priority
            # preference = self.w_kept
            preference = torch.randn(self.model_.reward_size)
            preference = (torch.abs(preference) /
                          torch.norm(preference, p=1)).type(FloatTensor)

            state = torch.from_numpy(state).type(FloatTensor)

            _, q = self.model_(Variable(state, requires_grad=False),
                               Variable(preference.unsqueeze(0),
                                        requires_grad=False),
                               execmask=Variable(
                                   self.mem_last_mask.unsqueeze(0),
                                   requires_grad=False))

            q = q[0, action].data

            if self.algorithm == 'naive':
                wr = preference.dot(torch.from_numpy(reward).type(FloatTensor))
                if not terminal:
                    next_state = torch.from_numpy(next_state).type(FloatTensor)
                    hq, _ = self.model_(Variable(next_state,
                                                 requires_grad=False),
                                        Variable(preference.unsqueeze(0),
                                                 requires_grad=False),
                                        execmask=Variable(
                                            self.mem_cur_mask.unsqueeze(0),
                                            requires_grad=False))
                    hq = hq.data[0]
                    p = abs(wr + self.gamma * hq - q)
                else:
                    self.w_kept = None
                    # if self.epsilon_decay:
                    #     self.epsilon -= self.epsilon_delta
                    p = abs(wr - q)
            elif self.algorithm == 'envelope':
                wq = preference.dot(q)
                wr = preference.dot(torch.from_numpy(reward).type(FloatTensor))
                if not terminal:
                    next_state = torch.from_numpy(next_state).type(FloatTensor)
                    hq, _ = self.model_(Variable(next_state,
                                                 requires_grad=False),
                                        Variable(preference.unsqueeze(0),
                                                 requires_grad=False),
                                        execmask=Variable(
                                            self.mem_cur_mask.unsqueeze(0),
                                            requires_grad=False))
                    hq = hq.data[0]
                    whq = preference.dot(hq)
                    p = abs(wr + self.gamma * whq - wq)
                else:
                    self.w_kept = None
                    # if self.epsilon_decay:
                    #     self.epsilon -= self.epsilon_delta
                    # if self.homotopy:
                    #     self.beta += self.beta_delta
                    #     self.beta_delta = (self.beta - self.beta_init) * self.beta_expbase + self.beta_init - self.beta
                    p = abs(wr - wq)
            p += 1e-5

            self.priority_mem.append(p)
            if len(self.trans_mem) > self.mem_size:
                self.trans_mem.popleft()
                self.priority_mem.popleft()

        self.actToBeRecorded = None

    def finalizeRecord(self, reward, domainInControl=None):
        if domainInControl is None:
            domainInControl = self.domainString
        if self.episodes[domainInControl] is None:
            logger.warning(
                "record attempted to be finalized for domain where nothing has been recorded before"
            )
            return

        # # normalising total return to -1~1
        # reward /= 20.0

        terminal_state, terminal_action = self.convertStateAction(
            TerminalState(), TerminalAction())

        # # normalising total return to -1~1
        # reward /= 20.0

        self.mem_last_state = self.mem_cur_state
        self.mem_last_action = self.mem_cur_action
        self.mem_last_mask = self.mem_cur_mask
        self.mem_cur_state = np.vstack(
            [np.expand_dims(x, 0) for x in [terminal_state]])
        self.mem_cur_action = None
        self.mem_cur_mask = torch.zeros(self.action_dim).type(FloatTensor)

        state = self.mem_last_state
        action = self.mem_last_action
        next_state = self.mem_cur_state
        terminal = True

        if state is not None:
            self.trans_mem.append(
                self.trans(
                    torch.from_numpy(state).type(FloatTensor),  # state
                    action,  # action
                    torch.from_numpy(next_state).type(
                        FloatTensor),  # next state
                    torch.from_numpy(reward).type(FloatTensor),  # reward
                    terminal,  # terminal
                    self.mem_last_mask,  # action mask
                    self.mem_cur_mask))  # next action mask

            # randomly produce a preference for calculating priority
            # preference = self.w_kept
            preference = torch.randn(self.model_.reward_size)
            preference = (torch.abs(preference) /
                          torch.norm(preference, p=1)).type(FloatTensor)

            state = torch.from_numpy(state).type(FloatTensor)

            _, q = self.model_(
                Variable(state, requires_grad=False),
                Variable(preference.unsqueeze(0), requires_grad=False))

            q = q.data[0, action]

            if self.algorithm == 'naive':
                wr = preference.dot(torch.from_numpy(reward).type(FloatTensor))
                if not terminal:
                    next_state = torch.from_numpy(next_state).type(FloatTensor)
                    hq, _ = self.model_(
                        Variable(next_state, requires_grad=False),
                        Variable(preference.unsqueeze(0), requires_grad=False))
                    hq = hq.data[0]
                    p = abs(wr + self.gamma * hq - q)
                else:
                    self.w_kept = None
                    # if self.epsilon_decay:
                    #     self.epsilon -= self.epsilon_delta
                    p = abs(wr - q)
            elif self.algorithm == 'envelope':
                wq = preference.dot(q)
                wr = preference.dot(torch.from_numpy(reward).type(FloatTensor))
                if not terminal:
                    next_state = torch.from_numpy(next_state).type(FloatTensor)
                    hq, _ = self.model_(
                        Variable(next_state, requires_grad=False),
                        Variable(preference.unsqueeze(0), requires_grad=False))
                    hq = hq.data[0]
                    whq = preference.dot(hq)
                    p = abs(wr + self.gamma * whq - wq)
                else:
                    self.w_kept = None
                    # if self.epsilon_decay:
                    #     self.epsilon -= self.epsilon_delta
                    # if self.homotopy:
                    #     self.beta += self.beta_delta
                    #     self.beta_delta = (self.beta - self.beta_init) * self.beta_expbase + self.beta_init - self.beta
                    p = abs(wr - wq)

            p += 1e-5

            self.priority_mem.append(p)
            if len(self.trans_mem) > self.mem_size:
                self.trans_mem.popleft()
                self.priority_mem.popleft()

    def convertStateAction(self, state, action):
        '''
        nnType = 'dnn'
        #nnType = 'rnn'
        # expand one dimension to match the batch size of 1 at axis 0
        if nnType == 'rnn':
            belief = np.expand_dims(belief,axis=0)
        '''
        if isinstance(state, TerminalState):
            if self.domainUtil.domainString == 'CamRestaurants':
                return [0] * 268, action
            elif self.domainUtil.domainString == 'CamHotels':
                return [0] * 111, action
            elif self.domainUtil.domainString == 'SFRestaurants':
                return [0] * 633, action
            elif self.domainUtil.domainString == 'SFHotels':
                return [0] * 438, action
            elif self.domainUtil.domainString == 'Laptops11':
                return [0] * 257, action
            elif self.domainUtil.domainString == 'TV':
                return [0] * 188, action
        else:
            flat_belief = flatten_belief(state, self.domainUtil)
            self.prev_state_check = flat_belief

            return flat_belief, action

    def convertDIPStateAction(self, state, action):
        '''

        '''
        if isinstance(state, TerminalState):
            return [0] * 89, action

        else:
            dip_state = DIP_state(state.domainStates[state.currentdomain],
                                  self.domainString)
            action_name = self.actions.action_names[action]
            act_slot = 'general'
            for slot in dip_state.slots:
                if slot in action_name:
                    act_slot = slot
            flat_belief = dip_state.get_beliefStateVec(act_slot)
            self.prev_state_check = flat_belief

            return flat_belief, action

    def nextAction(self, beliefstate, preference=None):
        '''
        select next action

        :param beliefstate:
        :param preference:
        :returns: (int) next summary action
        '''
        beliefVec = flatten_belief(beliefstate, self.domainUtil)
        execMask = self.summaryaction.getExecutableMask(
            beliefstate, self.lastSystemAction)
        execMask = torch.Tensor(execMask).type(FloatTensor)

        if preference is None:
            if self.w_kept is None:
                self.w_kept = torch.randn(self.model_.reward_size)
                self.w_kept = (torch.abs(self.w_kept) /
                               torch.norm(self.w_kept, p=1)).type(FloatTensor)
            preference = self.w_kept

        if self.is_training and (len(self.trans_mem) < self.batch_size * 10
                                 or torch.rand(1)[0] < self.epsilon):
            admissible = [i for i, x in enumerate(execMask) if x == 0.0]
            random.shuffle(admissible)
            nextaIdex = admissible[0]
        else:
            state = np.reshape(beliefVec, (1, len(beliefVec)))
            state = torch.from_numpy(state).type(FloatTensor)
            if self.algorithm == 'naive':
                _, Q = self.model_(
                    Variable(state, requires_grad=False),
                    Variable(preference.unsqueeze(0), requires_grad=False),
                    Variable(execMask.unsqueeze(0), requires_grad=False))
                nextaIdex = np.argmax(Q.detach().cpu().numpy())
            elif self.algorithm == 'envelope':
                _, Q = self.model_(Variable(state, requires_grad=False),
                                   Variable(preference.unsqueeze(0),
                                            requires_grad=False),
                                   execmask=Variable(execMask.unsqueeze(0),
                                                     requires_grad=False))
                Q = Q.view(-1, self.model_.reward_size)
                Q = torch.mv(Q.data, preference)
                action = Q.max(0)[1].cpu().numpy()
                nextaIdex = int(action)

        self.stats[nextaIdex] += 1
        summaryAct = self.action_names[nextaIdex]
        beliefstate = beliefstate.getDomainState(self.domainUtil.domainString)
        masterAct = self.summaryaction.Convert(beliefstate, summaryAct,
                                               self.lastSystemAction)

        return masterAct, nextaIdex

    def sample(self, pop, pri, k):
        pri = np.array(pri).astype(np.float)
        inds = np.random.choice(range(len(pop)),
                                k,
                                replace=False,
                                p=pri / pri.sum())
        return [pop[i] for i in inds]

    def actmsk(self, num_dim, index):
        mask = ByteTensor(num_dim).zero_()
        mask[index] = 1
        return mask.unsqueeze(0)

    def nontmlinds(self, terminal_batch):
        mask = ByteTensor(terminal_batch)
        inds = torch.arange(0, len(terminal_batch)).type(LongTensor)
        inds = inds[mask.eq(0)]
        return inds

    def train(self):
        '''
        call this function when the episode ends
        '''
        self.episodecount += 1
        if self.monitor is None:
            self.monitor = Monitor("-" + self.algorithm)

        if not self.is_training:
            logger.info("Not in training mode")
            return
        else:
            logger.info("Update naive morl policy parameters.")

        logger.info("Episode Num so far: %s" % (self.episodecount))

        if len(self.trans_mem) > self.batch_size * 10:

            self.update_count += 1

            minibatch = self.sample(self.trans_mem, self.priority_mem,
                                    self.batch_size)
            batchify = lambda x: list(x) * self.weight_num
            state_batch = batchify(map(lambda x: x.s, minibatch))
            action_batch = batchify(map(lambda x: LongTensor([x.a]),
                                        minibatch))
            reward_batch = batchify(map(lambda x: x.r.unsqueeze(0), minibatch))
            next_state_batch = batchify(map(lambda x: x.s_, minibatch))
            terminal_batch = batchify(map(lambda x: x.d, minibatch))
            mask_batch = batchify(map(lambda x: x.ms.unsqueeze(0), minibatch))
            next_mask_batch = batchify(
                map(lambda x: x.ms_.unsqueeze(0), minibatch))

            w_batch = np.random.randn(self.weight_num, self.model_.reward_size)
            w_batch = np.abs(w_batch) / \
                      np.linalg.norm(w_batch, ord=1, axis=1, keepdims=True)
            w_batch = torch.from_numpy(w_batch.repeat(
                self.batch_size, axis=0)).type(FloatTensor)

            if self.algorithm == 'naive':
                __, Q = self.model_(Variable(torch.cat(state_batch, dim=0)),
                                    Variable(w_batch),
                                    Variable(torch.cat(mask_batch, dim=0)))
                # detach since we don't want gradients to propagate
                # HQ, _    = self.model_(Variable(torch.cat(next_state_batch, dim=0), volatile=True),
                #                     Variable(w_batch, volatile=True))
                _, DQ = self.model(
                    Variable(torch.cat(next_state_batch, dim=0),
                             requires_grad=False),
                    Variable(w_batch, requires_grad=False),
                    Variable(torch.cat(next_mask_batch, dim=0),
                             requires_grad=False))
                _, act = self.model_(
                    Variable(torch.cat(next_state_batch, dim=0),
                             requires_grad=False),
                    Variable(w_batch, requires_grad=False),
                    Variable(torch.cat(next_mask_batch, dim=0),
                             requires_grad=False))[1].max(1)
                HQ = DQ.gather(1, act.unsqueeze(dim=1)).squeeze()

                w_reward_batch = torch.bmm(
                    w_batch.unsqueeze(1),
                    torch.cat(reward_batch, dim=0).unsqueeze(2)).squeeze()

                nontmlmask = self.nontmlinds(terminal_batch)
                with torch.no_grad():
                    Tau_Q = Variable(
                        torch.zeros(self.batch_size *
                                    self.weight_num).type(FloatTensor))
                    Tau_Q[nontmlmask] = self.gamma * HQ[nontmlmask]
                    Tau_Q += Variable(w_reward_batch)

                actions = Variable(torch.cat(action_batch, dim=0))

                # Compute Huber loss
                loss = F.smooth_l1_loss(Q.gather(1, actions.unsqueeze(dim=1)),
                                        Tau_Q.unsqueeze(dim=1))

            elif self.algorithm == 'envelope':
                action_size = self.model_.action_size
                reward_size = self.model_.reward_size
                __, Q = self.model_(Variable(torch.cat(state_batch, dim=0)),
                                    Variable(w_batch),
                                    w_num=self.weight_num,
                                    execmask=Variable(
                                        torch.cat(mask_batch, dim=0)))

                # detach since we don't want gradients to propagate
                # HQ, _    = self.model_(Variable(torch.cat(next_state_batch, dim=0), volatile=True),
                #                     Variable(w_batch, volatile=True), w_num=self.weight_num)
                _, DQ = self.model(Variable(torch.cat(next_state_batch, dim=0),
                                            requires_grad=False),
                                   Variable(w_batch, requires_grad=False),
                                   execmask=Variable(torch.cat(next_mask_batch,
                                                               dim=0),
                                                     requires_grad=False))
                w_ext = w_batch.unsqueeze(2).repeat(1, action_size, 1)
                w_ext = w_ext.view(-1, self.model.reward_size)
                _, tmpQ = self.model_(Variable(torch.cat(next_state_batch,
                                                         dim=0),
                                               requires_grad=False),
                                      Variable(w_batch, requires_grad=False),
                                      execmask=Variable(torch.cat(
                                          next_mask_batch, dim=0),
                                                        requires_grad=False))

                tmpQ = tmpQ.view(-1, reward_size)
                # print(torch.bmm(w_ext.unsqueeze(1),
                #               tmpQ.data.unsqueeze(2)).view(-1, action_size))
                act = torch.bmm(
                    Variable(w_ext.unsqueeze(1), requires_grad=False),
                    tmpQ.unsqueeze(2)).view(-1, action_size).max(1)[1]

                HQ = DQ.gather(
                    1,
                    act.view(-1, 1, 1).expand(DQ.size(0), 1,
                                              DQ.size(2))).squeeze()

                nontmlmask = self.nontmlinds(terminal_batch)
                with torch.no_grad():
                    Tau_Q = Variable(
                        torch.zeros(self.batch_size * self.weight_num,
                                    reward_size).type(FloatTensor))
                    Tau_Q[nontmlmask] = self.gamma * HQ[nontmlmask]
                    # Tau_Q.volatile = False
                    Tau_Q += Variable(torch.cat(reward_batch, dim=0))

                actions = Variable(torch.cat(action_batch, dim=0))

                Q = Q.gather(
                    1,
                    actions.view(-1, 1,
                                 1).expand(Q.size(0), 1,
                                           Q.size(2))).view(-1, reward_size)
                Tau_Q = Tau_Q.view(-1, reward_size)

                wQ = torch.bmm(Variable(w_batch.unsqueeze(1)),
                               Q.unsqueeze(2)).squeeze()

                wTQ = torch.bmm(Variable(w_batch.unsqueeze(1)),
                                Tau_Q.unsqueeze(2)).squeeze()

                # loss = F.mse_loss(Q.view(-1), Tau_Q.view(-1))
                # print self.beta
                loss = self.beta * F.mse_loss(wQ.view(-1), wTQ.view(-1))
                loss += (1 - self.beta) * F.mse_loss(Q.view(-1),
                                                     Tau_Q.view(-1))

            self.optimizer.zero_grad()
            loss.backward()
            for param in self.model_.parameters():
                param.grad.data.clamp_(-1, 1)
            self.optimizer.step()

            if self.update_count % self.update_freq == 0:
                self.model.load_state_dict(self.model_.state_dict())

            self.monitor.update(self.episodecount, loss=loss.data)

        self.savePolicyInc()  # self.out_policy_file)

    def savePolicy(self, FORCE_SAVE=False):
        """
        Does not use this, cause it will be called from agent after every episode.
        we want to save the policy only periodically.
        """
        pass

    def savePolicyInc(self, FORCE_SAVE=False):
        """
        save model and replay buffer
        """
        if self.episodecount % self.save_step == 0:
            torch.save(
                self.model, "{}.{}.pkl".format(self.out_policy_file,
                                               self.algorithm))

    def loadPolicy(self, filename):
        """
        load model and replay buffer
        """
        # load models
        self.model_ = torch.load("{}.{}.pkl".format(filename, self.algorithm))
        self.model = copy.deepcopy(self.model_)

    def restart(self):
        self.summaryAct = None
        self.lastSystemAction = None
        self.prevbelief = None
        self.actToBeRecorded = None
        self.w_kept = None
        if self.epsilon_decay:
            self.epsilon -= self.epsilon_delta
        if self.homotopy:
            self.beta += self.beta_delta
            self.beta_delta = (
                self.beta - self.beta_init
            ) * self.beta_expbase + self.beta_init - self.beta
コード例 #3
0
def train(env, agent, args):
    monitor = Monitor(train=True, spec="-{}".format(args.method))
    monitor.init_log(args.log, "roi_m.{}_e.{}_n.{}".format(args.model, args.env_name, args.name))
    env.reset()

    S = set()

    corWs = queue.Queue()

    # add two extreme points
    corWs.put(FloatTensor([1.0, 0.0]))
    corWs.put(FloatTensor([0.0, 1.0]))

    # outer_loop!
    for _ in range(args.ws):

        print(colored("size of corWs: {}".format(corWs.qsize()), "green"))

        if corWs.qsize() == 0:
            corWs.put(FloatTensor([1.0, 0.0]))
            corWs.put(FloatTensor([0.0, 1.0]))

        corner_w = corWs.get_nowait()
        while not is_corner(corner_w, S) and corWs.qsize()>0:
            corner_w = corWs.get_nowait()
            print(colored("{} left....".format(corWs.qsize()), "green"))
        if not is_corner(corner_w, S):
            print(colored("no more corner w...", "green"))
            print(colored("Final S contains", "green"))
            for s in S:
                print(colored(s, "green"))
            break
        print(colored("solve for w: {}".format(corner_w), "green"))

        for num_eps in range(int(args.episode_num / args.ws)):
            terminal = False
            env.reset()
            loss = 0
            cnt = 0
            tot_reward = 0

            tot_reward_mo = 0

            probe = None
            if args.env_name == "dst":
                probe = corner_w
            elif args.env_name in ['ft', 'ft5', 'ft7']:
                probe = FloatTensor([0.8, 0.2, 0.0, 0.0, 0.0, 0.0])

            while not terminal:
                state = env.observe()
                action = agent.act(state, corner_w)
                agent.w_kept = corner_w
                next_state, reward, terminal = env.step(action)
                if args.log:
                    monitor.add_log(state, action, reward, terminal, agent.w_kept)
                agent.memorize(state, action, next_state, reward, terminal, roi=True)
                loss += agent.learn(corner_w)
                if cnt > 100:
                    terminal = True
                    agent.reset()
                tot_reward = tot_reward + (probe.cpu().numpy().dot(reward)) * np.power(args.gamma, cnt)

                tot_reward_mo = tot_reward_mo + reward * np.power(args.gamma, cnt)

                cnt = cnt + 1

            _, q = agent.predict(probe)

            if args.env_name == "dst":
                act_1 = q[0, 3]
                act_2 = q[0, 1]
            elif args.env_name in ['ft', 'ft5', 'ft7']:
                act_1 = q[0, 1]
                act_2 = q[0, 0]

            if args.method == "crl-naive":
                act_1 = act_1.data.cpu()
                act_2 = act_2.data.cpu()
            elif args.method == "crl-envelope":
                act_1 = probe.dot(act_1.data)
                act_2 = probe.dot(act_2.data)
            elif args.method == "crl-energy":
                act_1 = probe.dot(act_1.data)
                act_2 = probe.dot(act_2.data)
            print("end of eps %d with total reward (1) %0.2f (%0.2f, %0.2f), the Q is %0.2f | %0.2f; loss: %0.4f" % (
                num_eps,
                tot_reward,
                tot_reward_mo[0],
                tot_reward_mo[1],
                act_1,
                act_2,
                # q__max,
                loss / cnt))
            monitor.update(num_eps,
                           tot_reward,
                           act_1,
                           act_2,
                           #    q__max,
                           loss / cnt)


        # agent.is_train=False
        terminal = False
        env.reset()
        cnt = 0
        tot_reward_mo = 0
        while not terminal:
            state = env.observe()
            action = agent.act(state, corner_w)
            agent.w_kept = corner_w
            next_state, reward, terminal = env.step(action)
            if cnt > 100:
                terminal = True
                agent.reset()
            tot_reward_mo = tot_reward_mo + reward * np.power(args.gamma, cnt)
            cnt = cnt + 1
        agent.is_train=True

        S, corWs = update_ccs(S, corWs, tot_reward_mo)

        print(colored("----------------\n", "red"))
        print(colored("Current S contains", "red"))
        for s in S:
            print(colored(s, "red"))
        print(colored("----------------\n", "red"))

    # if num_eps+1 % 100 == 0:
    # 	agent.save(args.save, args.model+args.name+"_tmp_{}".format(number))
    agent.save(args.save, "roi_m.{}_e.{}_n.{}".format(args.model, args.env_name, args.name))
コード例 #4
0
def train(env, agent, args):
    monitor = Monitor(train=True, spec="-{}".format(args.method))
    monitor.init_log(
        args.log, "m.{}_e.{}_n.{}".format(args.model, args.env_name,
                                          args.name))
    env.reset()
    initial_state = env.observe()
    for num_eps in range(args.episode_num):
        terminal = False
        env.reset()
        loss = 0
        cnt = 0
        act1 = 0
        act2 = 0
        tot_reward = 0
        tot_reward_nc = 0
        tot_reward_dist = 0
        mask = None
        next_mask = None
        probe = None
        if args.env_name == "dst":
            probe = FloatTensor([0.8, 0.2])
        elif args.env_name == "crp":
            probe = FloatTensor([0.5, 0.5])
        elif args.env_name in ['ft', 'ft5', 'ft7']:
            probe = FloatTensor([0.8, 0.2, 0.0, 0.0, 0.0, 0.0])

        while not terminal:
            t_now = time.time()
            state = env.observe()
            t_obs = time.time() - t_now
            t_now = time.time()
            if args.env_name == "crp":
                mask = env.env.get_action_out_mask()
            action = agent.act(state, mask=mask)
            t_policy = time.time() - t_now
            t_now = time.time()
            next_state, reward, terminal = env.step(action, step=0.5)
            t_step = time.time() - t_now
            if args.env_name == "crp":
                next_mask = env.env.get_action_out_mask()
            if args.log:
                monitor.add_log(state, action, reward, terminal, agent.w_kept)
            t_now = time.time()
            agent.memorize(state, action, next_state, reward, terminal, mask,
                           next_mask)
            t_mem = time.time() - t_now
            t_now = time.time()
            loss += agent.learn()
            t_learn = time.time() - t_now
            if terminal:
                # terminal = True
                t_now = time.time()
                agent.reset()
                t_reset = time.time() - t_now
            tot_reward = tot_reward + (probe.cpu().numpy().dot(reward))
            act1 += reward[0]
            act2 += reward[1]
            tot_reward_nc = tot_reward_nc + 1 - reward[0]
            tot_reward_dist = tot_reward_dist + env.env.get_distortion(
                absolute=True, tollerance=0) / 10
            cnt = cnt + 1

        # _, q = agent.predict(probe, initial_state=initial_state)

        # if args.env_name == "dst":
        #     act_1 = q[0, 3]
        #     act_2 = q[0, 1]
        if args.env_name == "crp":
            act_1 = act1
            act_2 = act2
        # elif args.env_name in ['ft', 'ft5', 'ft7']:
        # act_1 = q[0, 1]
        # act_2 = q[0, 0]

        # if args.method == "crl-naive":
        #     act_1 = act_1.data.cpu()
        #     act_2 = act_2.data.cpu()
        # elif args.method == "crl-envelope":
        #     act_1 = probe.dot(act_1.data)
        #     act_2 = probe.dot(act_2.data)
        # elif args.method == "crl-energy":
        #     act_1 = probe.dot(act_1.data)
        #     act_2 = probe.dot(act_2.data)
        print(
            "end of eps %d with total reward (1) %0.2f, the Q is %0.2f | %0.2f; loss: %0.4f;  total_nc: %0.2f; total_dist: %0.2f;beta : %0.2f;eps : %0.2f;"
            % (
                num_eps,
                tot_reward,
                act_1,
                act_2,
                # q__max,
                loss / cnt,
                tot_reward_nc,
                tot_reward_dist,
                agent.beta,
                agent.epsilon))
        # print("t_obs : %0.2f;t_policy : %0.2f;t_step : %0.2f;t_mem : %0.2f;t_learn : %0.2f;t_reset : %0.2f" % (
        #     t_obs,
        #     t_policy,
        #     t_step,
        #     t_mem,
        #     t_learn,
        #     t_reset,))

        monitor.update(
            num_eps,
            tot_reward,
            act_1,
            act_2,
            #    q__max,
            loss / cnt)
        if (num_eps) % 10 == 0:
            agent.save(
                args.save, "m.{}_e.{}_n.{}".format(args.model, args.env_name,
                                                   args.name))
            agent.save(
                args.save,
                "m.{}_e.{}_n.{}.ep{}".format(args.model, args.env_name,
                                             args.name, num_eps // 100))