def init(): global model model_path = Model.get_model_path('diabetes-model') with open(model_path, 'rb') as file: model = pickle.load(file) # For demonstration purposes only print(mylib.get_alphas())
from utils import mylib os.makedirs('./outputs', exist_ok=True) X, y = load_diabetes(return_X_y=True) run = Run.get_context() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) data = {"train": {"X": X_train, "y": y_train}, "test": {"X": X_test, "y": y_test}} # list of numbers from 0.0 to 1.0 with a 0.05 interval alphas = mylib.get_alphas() for alpha in alphas: # Use Ridge algorithm to create a regression model reg = Ridge(alpha=alpha) reg.fit(data["train"]["X"], data["train"]["y"]) preds = reg.predict(data["test"]["X"]) mse = mean_squared_error(preds, data["test"]["y"]) run.log('alpha', alpha) run.log('MSE', mse) # Save model in the outputs folder so it automatically get uploaded when running on AML Compute model_file_name = 'ridge_{0:.2f}.pkl'.format(alpha) with open(os.path.join('./outputs/', model_file_name), 'wb') as file: pickle.dump(reg, file)