コード例 #1
0
ファイル: explorer.py プロジェクト: xpharry/a-star-turtlebot
 def __init__(self, start_node, goal_node, robot_rpm, map_img, animation):
     """
     Initialize the explorer with a start node and final goal node
     :param start_node: a list of start coordinates and orientation provided by the user
     :param goal_node: a list of goal coordinates and orientation provided by the user
     :param robot_rpm: a tuple of 2 RPMs for 2 wheels
     :param map_img: a tuple of 2-d arrays with information of the map
     """
     # Store start and goal nodes
     self.start_node = Node(start_node, None, 0, 0, None)
     self.goal_node = goal_node
     # Store animation
     self.animation = animation
     # Store RPMs of robot
     self.robot_rpm = robot_rpm
     # Original map
     self.map_img = map_img[0]
     # Extended map due to robot radius and clearance
     self.check_img = map_img[1]
     # Store angular step size and translation step size
     self.step_theta = constants.angular_step
     # Store map dimensions
     self.map_size = constants.map_size[0], constants.map_size[1], (constants.total_angle // self.step_theta)
     # Define an empty list to store all generated nodes and path nodes
     self.closed_nodes = []
     self.path_nodes = []
     # Define 3-D arrays to store information about generated nodes and parent nodes
     self.parent = np.full(fill_value=constants.no_parent, shape=self.map_size)
     # Define video-writer of open-cv to record the exploration and final path
     video_format = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D')
     self.video_output = cv2.VideoWriter('video_output.avi', video_format, 200.0,
                                         (self.map_size[1], self.map_size[0]))
コード例 #2
0
ファイル: hetio.py プロジェクト: treble-maker123/biograph
def build_nodes(hetio: Dict, **kwargs) -> List[Node]:
    force_rebuild = kwargs.get("force_rebuild", False)
    save_checkpoint = kwargs.get("save_checkpoint", True)

    if not force_rebuild:
        if os.path.exists(NODES_CHECKPOINT):
            return Node.deserialize_bunch(NODES_CHECKPOINT)
        else:
            log.info("Node checkpoint does not exist, building nodes.")

    nodes = [
        Node(h["identifier"], h["name"], h["kind"],
             h["data"].get("source", None) or h["data"].get("sources", []),
             h["data"].get("license", None), h["data"].get("url", None))
        for h in hetio["nodes"]
    ]

    assert len(nodes) == len(hetio["nodes"])

    umls = kwargs.get("umls", None)
    do = kwargs.get("do", None)

    if umls is not None:
        nodes = add_compound_metadata(hetio, nodes, umls)

    if do is not None:
        nodes = add_disease_metadata(hetio, nodes, do)

    if save_checkpoint:
        log.info("Checkpointing nodes...")
        Node.serialize_bunch(nodes, NODES_CHECKPOINT)

    return nodes
コード例 #3
0
    def gen_node_info(self):
        overcloud_ip_list = TripleoHelper.find_overcloud_ips()

        for node_ip in overcloud_ip_list:
            LOG.info('Introspecting node %s' % node_ip)
            node = Node('intro-%s' % node_ip,
                        address=node_ip,
                        user=self.overcloud_user)
            node_mac = None
            virsh_domain = None
            server_name, _ = node.execute('hostname')
            server_name = server_name.rstrip()
            if 'overcloud-controller' in server_name:
                node_type = 'controller'
            elif 'overcloud-novacompute' in server_name:
                node_type = 'compute'
            else:
                raise TripleOInspectorException('Unknown type '
                                                '(controller/compute) %s ' %
                                                server_name)
            try:
                processutils.execute('ping -c 1 %s' % node_ip)
                res, _ = processutils.execute('/usr/sbin/arp -a '
                                              '%s' % node_ip)
                node_mac = \
                    re.search('([0-9a-z]+:){5}[0-9a-z]+', res).group(0)
                virsh_domain = \
                    TripleoHelper.get_virtual_node_name_from_mac(node_mac)
            except AttributeError:
                LOG.warning("Unable to find MAC address for node {"
                            "}".format(node_ip))

            # find ovs controller and manager
            ovs_controller = self.get_ovs_controller(node)
            out, _ = node.execute('ovs-vsctl get-manager', as_root=True)
            ovs_managers = out.rstrip().split("\n")
            if all(ovs_manager == '' for ovs_manager in ovs_managers):
                LOG.warning(
                    "OVS managers for node {} is empty!".format(node_ip))
            self.node_info['servers'][server_name] = {
                'address': node_ip,
                'user': self.overcloud_user,
                'type': node_type,
                'orig-ctl-mac': node_mac,
                'vNode-name': virsh_domain,
                'ovs-controller': ovs_controller,
                'ovs-managers': ovs_managers
            }
コード例 #4
0
    def set_node(self,
                 node_number,
                 x_coordinate,
                 y_coordinate,
                 z_coordinate=None,
                 values=None):
        """
        Modify an existing node. For adding a new node function add_node() has to be used.

        Args:
            node_number: Number of the node to be modified.
            x_coordinate: x-coordinate
            y_coordinate: y-coordinate
            z_coordinate: z-coordinate
            values: dictionary of values

        Returns: 0 if successful

        """
        if node_number in self:
            self.nodes[node_number] = Node(node_number, x_coordinate,
                                           y_coordinate, z_coordinate, values)
            return 0
        else:
            self.log.error(f'Node number {node_number} does not exist.')
コード例 #5
0
    def add_node(self,
                 node_number,
                 x_coordinate,
                 y_coordinate,
                 z_coordinate=None,
                 values=None):
        """
        Adding a node to the grid. Each node number must be used just once, otherwise an error is thrown.

        Args:
            node_number: node number of the new node (optional)
            x_coordinate: x-coordinate
            y_coordinate: y-coordinate
            z_coordinate: z-coordinate
            values: dictionary of values

        Returns: added node

        """
        if node_number in self:
            self.log.error(
                f'Node with node_number {node_number} already exists with coordinates'
                f' {self.nodes[node_number].coordinates}')
        else:
            if isinstance(node_number, int):
                self.nodes[node_number] = Node(node_number, x_coordinate,
                                               y_coordinate, z_coordinate,
                                               values)
                return 0
            else:
                self.log.error(f'Integer expected got {node_number}')
コード例 #6
0
 def insert(self, el):
     nod = Node(el, 0)
     pos = self._hash_code(el)
     if self._table[pos] == 0:
         self._table[pos] = nod
         self._size += 1
     else:
         p = self._table[pos]
         while p.next_ != 0 and self._R(nod.info, p.next_.info)==False:
             p = p.next_
         if p.next_ == 0:
             p.next_ = nod
             self._size += 1
         else:
             nod.next_ = p.next_
             p.next_ = nod
             self._size += 1
コード例 #7
0
def build_nodes(repodb: pd.DataFrame, **kwargs) -> List[Node]:
    force_rebuild = kwargs.get("force_rebuild", False)
    save_checkpoint = kwargs.get("save_checkpoint", True)

    if not force_rebuild:
        if os.path.exists(NODES_CHECKPOINT):
            return Node.deserialize_bunch(NODES_CHECKPOINT)
        else:
            log.info("Node checkpoint does not exist, building nodes.")

    nodes = []

    drug_ids = repodb["drug_id"].unique()
    disease_ids = repodb["ind_id"].unique()

    for drug_id in drug_ids:
        match = repodb[repodb["drug_id"] == drug_id]
        drug_names = match["drug_name"].unique()
        assert len(drug_names) == 1

        node = Node(drug_id,
                    drug_names[0],
                    kind="Compound",
                    sources=["RepoDB"])
        nodes.append(node)

    for disease_id in disease_ids:
        match = repodb[repodb["ind_id"] == disease_id]
        disease_names = match["ind_name"].unique()
        assert len(disease_names) == 1

        node = Node(disease_id,
                    disease_names[0],
                    kind="Disease",
                    sources=["RepoDB"])
        nodes.append(node)

    log.info(f"Built {len(nodes)} nodes from RepoDB.")

    if save_checkpoint:
        log.info("Checkpointing nodes...")
        Node.serialize_bunch(nodes, NODES_CHECKPOINT)

    return nodes
コード例 #8
0
def ReadInGraph(file_name):
    nodes = dict()
    with open(file_name, 'r') as undirected_graph:
        for node_line in undirected_graph:
            node_line = node_line.split()
            starting_node_id = int(node_line.pop(0))
            if starting_node_id not in nodes:
                nodes[starting_node_id] = Node(starting_node_id)
            for connected_node in node_line:
                t = connected_node.split(',')
                node_id, length = int(t[0]), int(t[1])
                if node_id not in nodes:
                    nodes[node_id] = Node(node_id)

                e = Edge(length, nodes[starting_node_id], nodes[node_id])
                nodes[starting_node_id].AddEdge(e)
                nodes[node_id].AddEdge(e)

    return nodes
コード例 #9
0
def ReadGraph(filename):
    nodes = dict()
    with open(filename, 'r') as G:
        header = G.readline()
        header = header.split()
        vertex_count = int(header[0])
        edge_count = int(header[1])
        for line in G:
            line = line.split()
            tail = int(line[0])
            head = int(line[1])
            weight = int(line[2])
            if tail not in nodes:
                nodes[tail] = Node(tail)
            if head not in nodes:
                nodes[head] = Node(head)
            edge = Edge(weight, nodes[tail], nodes[head])
            nodes[tail].AddEdge(edge)
            nodes[head].AddEdge(edge)
    return nodes
コード例 #10
0
ファイル: graph.py プロジェクト: Siddharthss500/AI-1
    def create_graph_from_maze(self):
        for row in range(len(self.maze)):
            for column in range(len(self.maze)):
                if self.maze[row, column] == 0:
                    continue
                self.graph_maze[row, column] = Node(value=self.maze[row,
                                                                    column],
                                                    row=row,
                                                    column=column,
                                                    algorithm=self.algorithm)

        # Left
        for row in range(len(self.maze)):
            for column in range(len(self.maze)):
                try:
                    if column - 1 >= 0:
                        self.graph_maze[row,
                                        column].left = self.graph_maze[row,
                                                                       column -
                                                                       1]
                except Exception:
                    continue

        # Right
        for row in range(len(self.maze)):
            for column in range(len(self.maze)):
                try:
                    self.graph_maze[row,
                                    column].right = self.graph_maze[row,
                                                                    column + 1]
                except Exception:
                    continue

        # Up
        for row in range(len(self.maze)):
            for column in range(len(self.maze)):
                try:
                    if row - 1 >= 0:
                        self.graph_maze[row,
                                        column].up = self.graph_maze[row - 1,
                                                                     column]
                except Exception:
                    continue

        # Down
        for row in range(len(self.maze)):
            for column in range(len(self.maze)):
                try:
                    self.graph_maze[row,
                                    column].down = self.graph_maze[row + 1,
                                                                   column]
                except Exception:
                    continue
コード例 #11
0
def swap_every_two(head) -> Node:
    first = head
    second = head.next
    while second is not None:
        temp = second.val
        second.val = first.val
        first.val = temp

        if second.next is not None:
            first = second.next
            second = first.next
        else:
            first, second = None, None

    return head



if __name__ == "__main__":
    test = Node(1,Node(2,Node(3,Node(4))))
    result = swap_every_two(test)
    while result is not None:
        print(result.val)
        result = result.next

    test = Node(1,Node(2,Node(3)))
    result = swap_every_two(test)
    while result is not None:
        print(result.val)
        result = result.next
コード例 #12
0
def hierarchy(data, parent=None, index=0):
    node = Node(parent)
    node.index = index
    index += 1
    stat = {
        # 【实体集合】
        'entity': set(),
        # 下一个可用的编号
        'index': index,
        # 统计信息
        'n_root': 0,
        'n_intent': 0,
        'n_pickone': 0,
        'n_order': 0,
        'n_exchangeable': 0,
        'n_content': 0,
        'n_tag': 0
    }
    # 检查每个节点类型,对于每种类型的节点,补全初始值,删除无效字段
    if 'type' not in data:
        raise_error(
            'Key "type" not found nearby "...%s...", a node must contains key "type".' % str(data)[:64])
    node.data['type'] = data['type']
    if node.data['type'] == 'root':
        pass
    elif node.data['type'] == 'holder':
        return (False, )
    elif node.data['type'] == 'intent':
        if 'intent' not in data:
            raise_error(
                'Key "intent" not found nearby "...%s...", intent node must contains key "intent".' % str(data)[:64])
        node.data['intent'] = data['intent']
        _check_set_float(node, data, 'dropout', 0.0, 0.0, 1.0)
        _check_set_float(node, data, 'weight', 1.0)
    elif node.data['type'] in ('pickone', 'order', 'exchangeable'):
        _set_if_exist(node, data, 'name')
        _check_set_float(node, data, 'dropout', 0.0, 0.0, 1.0)
        if parent != None and parent.data['type'] in ('pickone', 'intent'):
            _check_set_float(node, data, 'weight', 1.0)
    elif node.data['type'] == 'content':
        if 'isEntity' not in data:
            node.data['isEntity'] = False
        else:
            node.data['isEntity'] = bool(data['isEntity'])
        if node.data['isEntity']:
            if 'entity' not in data:
                raise_error(
                    'Key "entity" not found nearby "...%s...", entity content node must contains key "entity".' % str(data)[:64])
            node.data['entity'] = data['entity']
            stat['entity'].add(node.data['entity'])
        else:
            if 'content' not in data or not isinstance(data['content'], Iterable):
                return (False, )
            node.data['content'] = []
            stat['n_tag'] += len(data['content'])
            for item in data['content']:
                node.data['content'].append(item)
        _set_if_exist(node, data, 'name')
        if parent != None and parent.data['type'] in ('pickone', 'intent'):
            _check_set_float(node, data, 'weight', 1.0)
        _check_set_float(node, data, 'dropout', 0.0, 0.0, 1.0)
        _check_set_float(node, data, 'cut', 0.0, 0.0, 1.0)
        if node.data['cut'] > 0.0:
            _check_set_float(node, data, 'word_cut', 0.0, 0.0, 1.0)
    else:
        raise_error(
            'Unknoe node type "%s" nearby "...%s...".' % (node.data['type'], str(data)[:64]))
    stat['n_' + node.data['type']] += 1
    # 叶节点返回
    if node.data['type'] == 'content':
        return True, node, stat
    # 添加子节点
    node.children = []
    if 'children' in data and isinstance(data['children'], Iterable):
        for child in data['children']:
            result = hierarchy(child, node, stat['index'])
            if result[0]:
                node.children.append(result[1])
                r_st = result[2]
                stat['entity'].update(r_st['entity'])
                stat['index'] = r_st['index']
                stat['n_intent'] += r_st['n_intent']
                stat['n_pickone'] += r_st['n_pickone']
                stat['n_order'] += r_st['n_order']
                stat['n_exchangeable'] += r_st['n_exchangeable']
                stat['n_content'] += r_st['n_content']
                stat['n_tag'] += r_st['n_tag']
    if len(node.children) == 0:
        return (False,)
    if node.data['type'] in ('root', 'pickone', 'intent'):
        node.weights = []
        for child in node.children:
            node.weights.append(child.data['weight'])
        node.weights = array(node.weights, dtype=float32)
    return True, node, stat
コード例 #13
0
from utils.node import Node


def reverse_list(head):
    prev = head
    head = head.next
    prev.next = None
    temp = ''

    while temp is not None:
        temp = head.next
        head.next = prev
        prev = head
        if temp is not None:
            head = temp

    return head


if __name__ == "__main__":
    test = Node(4, Node(3, Node(2, Node(1))))
    list_reversed = reverse_list(test)
    while list_reversed is not None:
        print(list_reversed.val)
        list_reversed = list_reversed.next
コード例 #14
0
ファイル: environment.py プロジェクト: holdenli/CS-444
def build_environment(root_ast):
    """
        environment stack:

        - PackageDeclaration
        - CompilationUnit
            - TypeImports
            - PackageImports
    """

    abs_tree = root_ast.find_child('CompilationUnit')

    pkg = list(abs_tree.select(['PackageDeclaration']))
    pkg_name = ''
    if len(pkg) == 0 or len(pkg[0].children) == 0:
        # default package name
        pkg = Node(name='PackageDeclaration', children=[
            Node(name='Identifier', value=Token(label='Identifier',
            value='MAIN_PKG', pos=-1, line=-1))
        ])
        pkg_name = 'MAIN_PKG'
    else:
        pkg = pkg[0]
        pkg_name = '.'.join(pkg.select_leaf_values(['Identifier']))

    # add the package to the environment
    pkg_env = Environment(name='PackageDeclaration', node=pkg,
        value='.'.join([l.value.value for l in pkg.leafs()])
        )
    pkg.env = pkg_env # link the node back to here
    
    cu_node = list(abs_tree.select(['CompilationUnit']))
    if len(cu_node) != 1:
        return pkg_env
    cu = Environment(name='CompilationUnit', node=cu_node[0])
    cu_node[0].env = cu

    # add type imports to CompilationUnit
    ti = {}
    for i in abs_tree.select(['TypeImports', 'ImportDeclaration']):
        i_name = '.'.join(n.value.value for n in i.leafs())

        ti[i_name] = i

    ti_node = list(abs_tree.select(['TypeImports']))[0]
    ti_env = Environment(name='TypeImport', node=ti_node,
                         names=ti)
    cu.children.append(ti_env)
    ti_node.env = ti_env

    # add package imports to CompilationUnit
    pi = {}
    for i in abs_tree.select(['PackageImports', 'ImportDeclaration']):
        p_name = '.'.join(n.value.value for n in i.leafs())
        pi[p_name] = i
   
    # also add the package name itself into the package imports
    pi[pkg_name] = pkg

    pi_node = list(abs_tree.select(['PackageImports']))[0]
    pi_env = Environment(name='PackageImports', node=pi_node,
                         names=pi)
    cu.children.append(pi_env)
    pi_node.env = pi_env

    # add a class or interface to the package
    type_name = ''
    cls = abs_tree.find_child('ClassDeclaration')
    iface = abs_tree.find_child('InterfaceDeclaration')
    if cls != None:
        cu.children.append(build_class_env(cls))
        type_name = cls.find_child('ClassName').leaf_values()[0]
    if iface != None:
        cu.children.append(build_interface_env(iface))
        type_name = iface.find_child('InterfaceName').leaf_values()[0]

    # add the CompilationUnit to the package
    cu.canon = '%s.%s' % (pkg_name, type_name)

    pkg_env.children.append(cu)

    return pkg_env
from utils.node import Node


def get_nth_from_last(linked_list, n):
    output = linked_list
    for _ in range(n):
        linked_list = linked_list.next

    while linked_list.next is not None:
        output = output.next
        linked_list = linked_list.next

    return output.val


test_list = Node(0, Node(1, Node(2, Node(3, Node(4, Node(5))))))
assert get_nth_from_last(test_list, 2) == 3
assert get_nth_from_last(test_list, 3) == 2
assert get_nth_from_last(test_list, 5) == 0
コード例 #16
0
 start_node = ast.literal_eval(start_config)
 # Check if correct no. of elements have been given for the puzzle
 if len(start_node) != int(puzzle_size) + 1:
     print('You entered', len(start_node), 'elements for the puzzle!')
     print('Please enter exactly ' + str(int(puzzle_size) + 1) + ' elements each separated by a comma')
     quit()
 puzzle = pzl.Puzzle(start_node, goal_matrix)
 # Print the start config
 print('Initial node:\n', puzzle.initial_node)
 print('Goal node:\n', puzzle.goal_node)
 # Check solvability of the initial node given by the user
 if not puzzle.check_solvability():
     print('UNSOLVABLE CONFIG PROVIDED')
 else:
     # Define start node
     start_node = Node(puzzle.initial_node, puzzle.get_final_weight(puzzle.initial_node, 0), 0, 0, -1, None)
     # Store start node in open and generated nodes list
     puzzle.open_nodes.append(start_node)
     puzzle.generated_nodes.append(start_node)
     # Store start time for exploration
     start_time = time()
     # Start exploration to find goal node
     while len(puzzle.open_nodes):
         # Get the node with lowest weight
         current_node = puzzle.open_nodes.pop()
         # Add current node to closed nodes and delete it from open nodes
         puzzle.closed_nodes.append(current_node)
         # Check if current node is goal node
         if np.all(puzzle.goal_node == current_node.arr):
             break
         # Generate child nodes and iterate through them
コード例 #17
0
 def parse_node(self, idx, node):
     splits = list(filter(lambda x : x != "", node.replace("\n", "").split(" ")))
     assert len(splits) == 1, "Wrong init of node"
     return Node(idx, int(splits[0]))
コード例 #18
0
 def read_node(self):
     with open(self.data_dir+"node.txt", "r") as nodes_data:
         for i, data in enumerate(nodes_data):
             idNode = int(data.replace("\n", ""))
             node = Node(idNode)
     return node
コード例 #19
0

if __name__ == '__main__':
    start_time = time()
    # Initialize the explorer class
    start_node_coords = tuple(ast.literal_eval(start_node_coords))
    goal_node_coords = tuple(ast.literal_eval(goal_node_coords))
    explorer = Explorer(start_node_coords, goal_node_coords)
    obstacle_map = Map(0, 0)
    # Check validity of start and goal nodes
    if not (obstacle_map.check_node_validity(start_node_coords[0], obstacle_map.height - start_node_coords[1] - 1)
            and obstacle_map.check_node_validity(goal_node_coords[0], obstacle_map.height - goal_node_coords[1] - 1)):
        print('One of the points lie in obstacle space!!\nPlease try again')
        quit()
    # Get the start node and add it to open nodes
    start_node = Node(start_node_coords, explorer.get_final_weight(start_node_coords, 0), 0, None)
    explorer.open_nodes.append(start_node)
    explorer.generated_nodes.append(start_node)
    while len(explorer.open_nodes):
        current_node = explorer.open_nodes.pop(0)
        explorer.closed_nodes.append(current_node)
        # Check if current node is the goal node
        if current_node.data == goal_node_coords:
            break
        # Generate child nodes and iterate through them
        for child_node in current_node.generate_child_nodes((obstacle_map.width, obstacle_map.height)):
            node_repeated = False
            # Update final weight of the child node
            child_node.weight = explorer.get_final_weight(child_node.data, child_node.cost)
            # Make sure the node does not lie in the obstacle space
            if obstacle_map.check_node_validity(child_node.data[0], obstacle_map.height - child_node.data[1] - 1):
コード例 #20
0
ファイル: explorer.py プロジェクト: xpharry/a-star-turtlebot
 def get_child_node(self, parent_node, l_vel, r_vel):
     """
     Get child node based on wheel velocities
     Show exploration by generating intermediate nodes
     :param parent_node: node class object of parent
     :param l_vel: left-wheel velocity of robot
     :param r_vel: right-wheel velocity of robot
     :return: node class object of child
     """
     # An empty list to store intermediate nodes
     inter_nodes = []
     valid_path = True
     # Define grey
     grey = [200, 200, 200]
     # Get coordinates  and orientation of parent node
     parent_node_data = parent_node.get_data()
     y, x = parent_node_data[0], parent_node_data[1]
     theta = np.pi * parent_node_data[2] * self.step_theta / 180
     prev_y, prev_x, prev_theta = y, x, parent_node_data[2]
     # Get linear and angular velocities in m/s and rad/s respectively
     linear_x = 0.5 * constants.wheel_radius * (l_vel + r_vel) * np.cos(theta) / constants.scaling_factor
     linear_y = 0.5 * constants.wheel_radius * (l_vel + r_vel) * np.sin(theta) / constants.scaling_factor
     linear_vel = sqrt((linear_x ** 2) + (linear_y ** 2))
     angular_vel = (constants.wheel_radius / constants.wheel_distance) * (r_vel - l_vel)
     t = 0
     while t < constants.total_time:
         # Increment time
         t += constants.time_step
         # Get new  coordinates and orientation using time step
         x += (0.5 * constants.wheel_radius * (l_vel + r_vel) * np.cos(theta) * constants.time_step *
               constants.time_scaling)
         y += (0.5 * constants.wheel_radius * (l_vel + r_vel) * np.sin(theta) * constants.time_step *
               constants.time_scaling)
         theta += ((constants.wheel_radius / constants.wheel_distance) * (r_vel - l_vel) *
                   constants.time_step * constants.time_scaling)
         # Get index of current orientation in grid world to check for parent
         theta_index = self.get_orientation_index(theta)
         # Check for validity of intermediate node
         if (check_node_validity(self.check_img, int(x), self.map_size[0] - int(y)) and
                 self.parent[int(y)][int(x)][theta_index] == constants.no_parent):
             # Add intermediate to its list
             inter_nodes.append(([prev_y, prev_x, prev_theta], [y, x, theta], [linear_vel, angular_vel]))
             # Update previous coordinates and orientation
             prev_x, prev_y, prev_theta = x, y, theta
         else:
             valid_path = False
             break
     # Discard entire path if any intermediate point lies within obstacle space
     if valid_path:
         last_node = None
         # Define base-cost of the child node
         base_cost = parent_node.get_base_weight()
         len_inter_nodes = len(inter_nodes)
         # Add exploration to video
         for i in range(len_inter_nodes):
             prev_node, current_node, _ = inter_nodes[i]
             # Update base-cost of the node
             base_cost += get_euclidean_distance(prev_node, current_node)
             # Get index of orientation of intermediate node
             prev_node[2] = self.get_orientation_index(prev_node[2])
             current_node[2] = self.get_orientation_index(current_node[2])
             # Update parent of the intermediate node
             self.parent[int(current_node[0])][int(current_node[1])][int(current_node[2])] = \
                 np.ravel_multi_index([int(prev_node[0]), int(prev_node[1]), int(prev_node[2])], dims=self.map_size)
             # Add nodes to exploration video
             if self.animation:
                 cv2.arrowedLine(self.map_img, (int(prev_node[1]), self.map_size[0] - int(prev_node[0])),
                                 (int(current_node[1]), self.map_size[0] - int(current_node[0])), grey)
                 self.video_output.write(self.map_img)
             # Make last node in the list as the child node and create is node class object
             if i == len_inter_nodes - 1:
                 last_node = Node(current_node, parent_node_data, float('inf'), float('inf'), inter_nodes)
                 last_node.set_base_weight(base_cost)
                 last_node.set_weight(self.get_final_weight(current_node, last_node.base_weight))
         return last_node
     return None
コード例 #21
0
 def get_undercloud():
     return Node('undercloud',
                 address=TripleoHelper.get_undercloud_ip(),
                 user='******',
                 password='******')
コード例 #22
0
ファイル: explorer.py プロジェクト: xpharry/a-star-turtlebot
class Explorer:
    def __init__(self, start_node, goal_node, robot_rpm, map_img, animation):
        """
        Initialize the explorer with a start node and final goal node
        :param start_node: a list of start coordinates and orientation provided by the user
        :param goal_node: a list of goal coordinates and orientation provided by the user
        :param robot_rpm: a tuple of 2 RPMs for 2 wheels
        :param map_img: a tuple of 2-d arrays with information of the map
        """
        # Store start and goal nodes
        self.start_node = Node(start_node, None, 0, 0, None)
        self.goal_node = goal_node
        # Store animation
        self.animation = animation
        # Store RPMs of robot
        self.robot_rpm = robot_rpm
        # Original map
        self.map_img = map_img[0]
        # Extended map due to robot radius and clearance
        self.check_img = map_img[1]
        # Store angular step size and translation step size
        self.step_theta = constants.angular_step
        # Store map dimensions
        self.map_size = constants.map_size[0], constants.map_size[1], (constants.total_angle // self.step_theta)
        # Define an empty list to store all generated nodes and path nodes
        self.closed_nodes = []
        self.path_nodes = []
        # Define 3-D arrays to store information about generated nodes and parent nodes
        self.parent = np.full(fill_value=constants.no_parent, shape=self.map_size)
        # Define video-writer of open-cv to record the exploration and final path
        video_format = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D')
        self.video_output = cv2.VideoWriter('video_output.avi', video_format, 200.0,
                                            (self.map_size[1], self.map_size[0]))

    def get_heuristic_score(self, node):
        """
        Implement heuristic function for a-star by calculating euclidean distance
        Heuristic is nothing but cost to goal
        :param: node: tuple containing coordinates and orientation of the current node
        :return: distance between the goal node and current node
        """
        # Evaluate euclidean distance between goal node and current node and return it
        return get_euclidean_distance(self.goal_node, node)

    def get_final_weight(self, node, base_cost):
        """
        Get final weight for a-star
        :param node: tuple containing coordinates and orientation of the current node
        :param base_cost: base cost of the current node
        :return: final weight for according to method
        """
        # Add cost-to-goal and cost-to-come to get final cost and return it
        return self.get_heuristic_score(node) + base_cost

    def get_orientation_index(self, theta):
        """
        Convert theta from radians to a grid world index based on pre-defined angular step
        :param theta: orientation of the robot in radians
        :return: index of orientation based on angular step
        """
        # Limit orientation between 0 to 360
        if theta >= 2 * np.pi:
            n = int(theta / (2 * np.pi))
            theta = theta - n * 2 * np.pi
        elif theta < 0:
            # Convert negative angle into positive and maintain the orientation between 0 to 360
            theta = abs(theta)
            if theta > 2 * np.pi:
                n = int(theta / (2 * np.pi))
                theta = theta - n * 2 * np.pi
        # Get orientation in degrees
        theta = theta + (180 * theta / np.pi)
        # Limit orientation between 0 to 360
        if theta > constants.total_angle:
            theta = theta - constants.total_angle
        # Return index by dividing orientation in degrees by angular step
        return int(theta / self.step_theta)

    def action_space(self, action):
        """
        Define action space
        :param action: Varies from 0-7 to call one of the 8 defined actions
        :return: a tuple of left and right wheel RPM respectively
        """
        if action == 0:
            return 0, self.robot_rpm[0]
        elif action == 1:
            return 0, self.robot_rpm[1]
        elif action == 2:
            return self.robot_rpm[0], 0
        elif action == 3:
            return self.robot_rpm[1], 0
        elif action == 4:
            return self.robot_rpm[0], self.robot_rpm[0]
        elif action == 5:
            return self.robot_rpm[1], self.robot_rpm[1]
        elif action == 6:
            return self.robot_rpm[0], self.robot_rpm[1]

        return self.robot_rpm[1], self.robot_rpm[0]

    def take_action(self, parent_node, action):
        """
        Call various actions based on an integer and get new child coordinates and orientation
        Applying differential drive formulae to get coordinates and orientation
        :param parent_node: a tuple of parent node coordinates and orientation
        :param action: Varies from 0-n to call one of the 8 defined actions
        :return: child node
        """
        # Get action to be performed on parent to generate child
        rpm = self.action_space(action)
        # Convert rpm into left and right wheel velocities respectively
        lw_velocity = rpm[0] * (2 * np.pi / 60)
        rw_velocity = rpm[1] * (2 * np.pi / 60)
        return self.get_child_node(parent_node, lw_velocity, rw_velocity)

    def explore(self):
        """
        Method to explore the map to find the goal
        :return: nothing
        """
        # Initialize priority queue
        node_queue = PriorityQueue()
        start_node = self.start_node.get_data()
        self.parent[int(start_node[0])][int(start_node[1])][int(start_node[2])] = constants.start_parent
        # Add start node to priority queue
        node_queue.put(self.start_node)
        # Start exploring
        while not node_queue.empty():
            # Get node with minimum total cost
            current_node = node_queue.get()
            self.closed_nodes.append(current_node)
            # Add node to generated nodes array
            # Check for goal node
            if (self.get_heuristic_score(current_node.get_data()) <= constants.goal_thresh or
                    current_node.get_data() == self.goal_node):
                self.path_nodes.append(current_node)
                break
            # Generate child nodes from current node
            for i in range(constants.max_actions):
                child_node = self.take_action(current_node, i)
                if child_node is not None:
                    # Add child node to priority queue
                    node_queue.put(child_node)

    def get_child_node(self, parent_node, l_vel, r_vel):
        """
        Get child node based on wheel velocities
        Show exploration by generating intermediate nodes
        :param parent_node: node class object of parent
        :param l_vel: left-wheel velocity of robot
        :param r_vel: right-wheel velocity of robot
        :return: node class object of child
        """
        # An empty list to store intermediate nodes
        inter_nodes = []
        valid_path = True
        # Define grey
        grey = [200, 200, 200]
        # Get coordinates  and orientation of parent node
        parent_node_data = parent_node.get_data()
        y, x = parent_node_data[0], parent_node_data[1]
        theta = np.pi * parent_node_data[2] * self.step_theta / 180
        prev_y, prev_x, prev_theta = y, x, parent_node_data[2]
        # Get linear and angular velocities in m/s and rad/s respectively
        linear_x = 0.5 * constants.wheel_radius * (l_vel + r_vel) * np.cos(theta) / constants.scaling_factor
        linear_y = 0.5 * constants.wheel_radius * (l_vel + r_vel) * np.sin(theta) / constants.scaling_factor
        linear_vel = sqrt((linear_x ** 2) + (linear_y ** 2))
        angular_vel = (constants.wheel_radius / constants.wheel_distance) * (r_vel - l_vel)
        t = 0
        while t < constants.total_time:
            # Increment time
            t += constants.time_step
            # Get new  coordinates and orientation using time step
            x += (0.5 * constants.wheel_radius * (l_vel + r_vel) * np.cos(theta) * constants.time_step *
                  constants.time_scaling)
            y += (0.5 * constants.wheel_radius * (l_vel + r_vel) * np.sin(theta) * constants.time_step *
                  constants.time_scaling)
            theta += ((constants.wheel_radius / constants.wheel_distance) * (r_vel - l_vel) *
                      constants.time_step * constants.time_scaling)
            # Get index of current orientation in grid world to check for parent
            theta_index = self.get_orientation_index(theta)
            # Check for validity of intermediate node
            if (check_node_validity(self.check_img, int(x), self.map_size[0] - int(y)) and
                    self.parent[int(y)][int(x)][theta_index] == constants.no_parent):
                # Add intermediate to its list
                inter_nodes.append(([prev_y, prev_x, prev_theta], [y, x, theta], [linear_vel, angular_vel]))
                # Update previous coordinates and orientation
                prev_x, prev_y, prev_theta = x, y, theta
            else:
                valid_path = False
                break
        # Discard entire path if any intermediate point lies within obstacle space
        if valid_path:
            last_node = None
            # Define base-cost of the child node
            base_cost = parent_node.get_base_weight()
            len_inter_nodes = len(inter_nodes)
            # Add exploration to video
            for i in range(len_inter_nodes):
                prev_node, current_node, _ = inter_nodes[i]
                # Update base-cost of the node
                base_cost += get_euclidean_distance(prev_node, current_node)
                # Get index of orientation of intermediate node
                prev_node[2] = self.get_orientation_index(prev_node[2])
                current_node[2] = self.get_orientation_index(current_node[2])
                # Update parent of the intermediate node
                self.parent[int(current_node[0])][int(current_node[1])][int(current_node[2])] = \
                    np.ravel_multi_index([int(prev_node[0]), int(prev_node[1]), int(prev_node[2])], dims=self.map_size)
                # Add nodes to exploration video
                if self.animation:
                    cv2.arrowedLine(self.map_img, (int(prev_node[1]), self.map_size[0] - int(prev_node[0])),
                                    (int(current_node[1]), self.map_size[0] - int(current_node[0])), grey)
                    self.video_output.write(self.map_img)
                # Make last node in the list as the child node and create is node class object
                if i == len_inter_nodes - 1:
                    last_node = Node(current_node, parent_node_data, float('inf'), float('inf'), inter_nodes)
                    last_node.set_base_weight(base_cost)
                    last_node.set_weight(self.get_final_weight(current_node, last_node.base_weight))
            return last_node
        return None

    def generate_path(self):
        """
        Generate path using back-tracking
        :return: a list containing path nodes
        """
        # Exit if exploration failed
        if not len(self.path_nodes):
            print('No path found')
            return False
        # Define colors
        red = [0, 0, 255]
        blue = [255, 0, 0]
        green = [0, 255, 0]
        # Open text file to write velocities
        vel_txt = open('output_files/commander.txt', 'w+')
        # Get first node nearest to the goal node to start backtracking
        last_node = self.path_nodes[0]
        print('Finding path...')
        # Iterate until we reach the initial node
        while last_node.get_data() != self.start_node.get_data():
            for node in self.closed_nodes:
                if node.get_data() == last_node.get_parent():
                    self.path_nodes.append(node)
                    last_node = node
                    break
        print('Path found')
        # Iterate through path nodes
        for i in range(len(self.path_nodes) - 2, -1, -1):
            # Get intermediate nodes of each node in path-nodes' list
            current_sub_nodes = self.path_nodes[i].get_sub_nodes()
            # Iterate through intermediate nodes' list to display path to be taken by the robot
            for j in range(0, len(current_sub_nodes)):
                current_node_data = current_sub_nodes[j]
                vel_txt.write(str(current_node_data[2][0]) + ',' + str(current_node_data[2][1]) + '\n')
                if self.animation:
                    cv2.line(self.map_img,
                             (int(current_node_data[0][1]), self.map_size[0] - int(current_node_data[0][0])),
                             (int(current_node_data[1][1]), self.map_size[0] - int(current_node_data[1][0])),
                             blue)
                    self.video_output.write(self.map_img)
        if self.animation:
            # Draw start and goal node to the video frame in the form of filled circle
            cv2.circle(self.map_img,
                       (int(self.path_nodes[-1].data[1]), self.map_size[0] - int(self.path_nodes[-1].data[0])),
                       int(constants.robot_radius), red, -1)
            cv2.circle(self.map_img,
                       (int(self.path_nodes[0].data[1]), self.map_size[0] - int(self.path_nodes[0].data[0])),
                       int(constants.robot_radius), green, -1)
            # Show path for longer time
            for _ in range(1000):
                self.video_output.write(self.map_img)
        return True
from utils.node import Node

def rotate_list(head: Node, k: int) -> Node:
    new_tail = head
    while k > 2:
        new_tail = new_tail.next
        k -= 1
    
    new_head = new_tail.next
    new_tail.next = None
    tail = new_head
    while tail.next is not None:
        tail = tail.next
    
    tail.next = head
    return new_head

if __name__ == "__main__":
    test: Node = Node(1, Node(2, Node(3, Node(4, Node(5)))))
    rotated_list: Node = rotate_list(test, 3) 
    rotated_list.print_linked_list()