def train(main_config, args): main_cfg = MainConfig(main_config, args) main_cfg.max_sequence_len = args.max_seq_length main_cfg.syn_weight = args.syn_weight main_cfg.vocab_size = args.vocab_size batch_size = tf.placeholder(tf.int64) vocab = tf.contrib.lookup.index_table_from_file(vocabulary_file=os.path.join(main_cfg.data_dir, main_cfg.vocab_file), num_oov_buckets=0, default_value=1) with tf.device('/cpu:0'): train_iter, dev_iter, test_iter, dev_run_iter = get_quora_datasets(main_cfg, batch_size, vocab) train_handle, test_handle, dev_handle, dev_run_handle = train_iter.string_handle(), \ test_iter.string_handle(), \ dev_iter.string_handle(), dev_run_iter.string_handle() model_name = 'bilstm_{}'.format(main_config['PARAMS']['embedding_size']) # Switcher handle placeholder, iterator handle = tf.placeholder(tf.string, shape=[], name='handle') quora_iter = tf.data.Iterator.from_string_handle(handle, train_iter.output_types, train_iter.output_shapes) quora_example = quora_iter.get_next() # obtaining finished step = tf.train.get_or_create_global_step() main_config['DATA']['emb_path'] = os.path.join(args.data_dir, main_config['DATA']['embeddings']) model = BiLSTMSiamese(quora_example, args, main_config) best_loss = float("inf") best_ckpt_saver = BestCheckpointSaver( save_dir=args.model_dir, num_to_keep=main_cfg.checkpoints_to_keep, maximize=True ) best_accuracy = best_ckpt_saver.get_best_accuracy() config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) with tf.train.MonitoredTrainingSession(checkpoint_dir=main_cfg.model_dir, save_checkpoint_steps=main_cfg.save_every, config=config, save_summaries_steps=0, save_summaries_secs=None, log_step_count_steps=0, hooks=[ SaveAtEnd(args.model_dir, model_name, main_cfg.checkpoints_to_keep)]) as session: model.set_session(session) log_saver = LogSaver(args.model_dir, 'summaries', session.graph) model_evaluator = EvalHelper(model, session, logger) start_time = time.time() patience_left = main_cfg.patience train_handle, dev_handle, dev_run_handle = session.run([train_handle, dev_handle, dev_run_handle]) session.run(train_iter.initializer, feed_dict={batch_size: main_cfg.batch_size}) session.run(dev_run_iter.initializer, feed_dict={batch_size: main_cfg.eval_batch_size}) logger.info('Starting training...') while patience_left: try: # run train batch loss, _, current_quora_ids, _ = model.run_train_batch(train_handle) global_step = session.run(step) # Use paraphrases to help model on difficult examples if global_step % main_cfg.eval_every == 0: model.evaluation_stats(train_handle, dev_run_handle, global_step, logger, log_saver) except tf.errors.OutOfRangeError: session.run(dev_iter.initializer, feed_dict={batch_size: main_cfg.eval_batch_size}) all_dev_acc, all_dev_loss = model_evaluator.evaluate_dev(dev_handle, global_step, logger) session.run(model.inc_gstep) # decay LR if all_dev_acc > best_accuracy: best_accuracy = all_dev_acc best_ckpt_saver.handle(all_dev_acc, session, step) patience_left = main_cfg.patience else: patience_left -= 1 if best_loss > all_dev_loss: best_loss = all_dev_loss session.run(dev_iter.initializer, feed_dict={batch_size: main_cfg.eval_batch_size}) session.run(train_iter.initializer, feed_dict={batch_size: main_cfg.batch_size}) logger.info('No improvement observed over {} epochs. Initiating early stopping'.format(main_cfg.patience)) end_time = time.time() total_time = timer(start_time, end_time) logger.info('Training took {}, best accuracy is {}'.format(total_time, best_accuracy)) # model_evaluator.save_dev_evaluation(args.model_dir, total_time) with open(os.path.join(args.model_dir, 'run_config.ini'), 'w') as configfile: # save main_config.write(configfile) saver = tf.train.Saver() with tf.Session(config=config) as session: session.run(tf.tables_initializer()) saver.restore(session, get_best_checkpoint(args.model_dir, select_maximum_value=True)) model.set_session(session) model_evaluator = EvalHelper(model, session, logger) test_handle = session.run(test_handle) session.run(test_iter.initializer, feed_dict={batch_size: main_cfg.eval_batch_size}) test_acc, test_loss = model_evaluator.evaluate_test(test_handle, logger) model_evaluator.save_test_evaluation(args.model_dir)
def train( main_config, model_config, model_name, experiment_name, dataset_name, ): main_cfg = MainConfig(main_config) model = MODELS[model_name] dataset = dataset_type.get_dataset(dataset_name) train_data = dataset.train_set_pairs() vectorizer = DatasetVectorizer(main_cfg.model_dir, raw_sentence_pairs=train_data) dataset_helper = Dataset(vectorizer, dataset, main_cfg.batch_size) max_sentence_len = vectorizer.max_sentence_len vocabulary_size = vectorizer.vocabulary_size train_mini_sen1, train_mini_sen2, train_mini_labels = dataset_helper.pick_train_mini_batch( ) train_mini_labels = train_mini_labels.reshape(-1, 1) test_sentence1, test_sentence2 = dataset_helper.test_instances() test_labels = dataset_helper.test_labels() test_labels = test_labels.reshape(-1, 1) num_batches = dataset_helper.num_batches model = model( max_sentence_len, vocabulary_size, main_config, model_config, ) model_saver = ModelSaver( main_cfg.model_dir, experiment_name, main_cfg.checkpoints_to_keep, ) config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=main_cfg.log_device_placement, ) with tf.Session(config=config) as session: global_step = 0 init = tf.global_variables_initializer() session.run(init) log_saver = LogSaver( main_cfg.logs_path, experiment_name, dataset_name, session.graph, ) model_evaluator = ModelEvaluator(model, session) metrics = {'acc': 0.0} time_per_epoch = [] log('Training model for {} epochs'.format(main_cfg.num_epochs)) for epoch in tqdm(range(main_cfg.num_epochs), desc='Epochs'): start_time = time.time() train_sentence1, train_sentence2 = dataset_helper.train_instances( shuffle=True) train_labels = dataset_helper.train_labels() train_batch_helper = BatchHelper( train_sentence1, train_sentence2, train_labels, main_cfg.batch_size, ) # small eval set for measuring dev accuracy dev_sentence1, dev_sentence2, dev_labels = dataset_helper.dev_instances( ) dev_labels = dev_labels.reshape(-1, 1) tqdm_iter = tqdm(range(num_batches), total=num_batches, desc="Batches", leave=False, postfix=metrics) for batch in tqdm_iter: global_step += 1 sentence1_batch, sentence2_batch, labels_batch = train_batch_helper.next( batch) feed_dict_train = { model.x1: sentence1_batch, model.x2: sentence2_batch, model.is_training: True, model.labels: labels_batch, } loss, _ = session.run([model.loss, model.opt], feed_dict=feed_dict_train) if batch % main_cfg.eval_every == 0: feed_dict_train = { model.x1: train_mini_sen1, model.x2: train_mini_sen2, model.is_training: False, model.labels: train_mini_labels, } train_accuracy, train_summary = session.run( [model.accuracy, model.summary_op], feed_dict=feed_dict_train, ) log_saver.log_train(train_summary, global_step) feed_dict_dev = { model.x1: dev_sentence1, model.x2: dev_sentence2, model.is_training: False, model.labels: dev_labels } dev_accuracy, dev_summary = session.run( [model.accuracy, model.summary_op], feed_dict=feed_dict_dev, ) log_saver.log_dev(dev_summary, global_step) tqdm_iter.set_postfix( dev_acc='{:.2f}'.format(float(dev_accuracy)), train_acc='{:.2f}'.format(float(train_accuracy)), loss='{:.2f}'.format(float(loss)), epoch=epoch) if global_step % main_cfg.save_every == 0: model_saver.save(session, global_step=global_step) model_evaluator.evaluate_dev(dev_sentence1, dev_sentence2, dev_labels) end_time = time.time() total_time = timer(start_time, end_time) time_per_epoch.append(total_time) model_saver.save(session, global_step=global_step) model_evaluator.evaluate_test(test_sentence1, test_sentence2, test_labels) model_evaluator.save_evaluation( '{}/{}'.format(main_cfg.model_dir, experiment_name), time_per_epoch[-1], dataset)
def train(main_config, model_config, model_name, dataset_name): main_cfg = MainConfig(main_config) model = MODELS[model_name] dataset = DATASETS[dataset_name]() model_name = '{}_{}'.format(model_name, main_config['PARAMS']['embedding_size']) train_data = dataset.train_set_pairs() vectorizer = DatasetVectorizer(train_data, main_cfg.model_dir) dataset_helper = Dataset(vectorizer, dataset, main_cfg.batch_size) max_sentence_len = vectorizer.max_sentence_len vocabulary_size = vectorizer.vocabulary_size train_mini_sen1, train_mini_sen2, train_mini_labels = dataset_helper.pick_train_mini_batch( ) train_mini_labels = train_mini_labels.reshape(-1, 1) test_sentence1, test_sentence2 = dataset_helper.test_instances() test_labels = dataset_helper.test_labels() test_labels = test_labels.reshape(-1, 1) num_batches = dataset_helper.num_batches model = model(max_sentence_len, vocabulary_size, main_config, model_config) model_saver = ModelSaver(main_cfg.model_dir, model_name, main_cfg.checkpoints_to_keep) config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=main_cfg.log_device_placement) with tf.Session(config=config) as session: global_step = 0 init = tf.global_variables_initializer() session.run(init) log_saver = LogSaver(main_cfg.logs_path, model_name, dataset_name, session.graph) model_evaluator = ModelEvaluator(model, session) metrics = {'acc': 0.0} time_per_epoch = [] for epoch in tqdm(range(main_cfg.num_epochs), desc='Epochs'): start_time = time.time() train_sentence1, train_sentence2 = dataset_helper.train_instances( shuffle=True) train_labels = dataset_helper.train_labels() train_batch_helper = BatchHelper(train_sentence1, train_sentence2, train_labels, main_cfg.batch_size) # small eval set for measuring dev accuracy dev_sentence1, dev_sentence2, dev_labels = dataset_helper.dev_instances( ) dev_labels = dev_labels.reshape(-1, 1) tqdm_iter = tqdm(range(num_batches), total=num_batches, desc="Batches", leave=False, postfix=metrics) for batch in tqdm_iter: global_step += 1 sentence1_batch, sentence2_batch, labels_batch = train_batch_helper.next( batch) feed_dict_train = { model.x1: sentence1_batch, model.x2: sentence2_batch, model.is_training: True, model.labels: labels_batch } loss, _ = session.run([model.loss, model.opt], feed_dict=feed_dict_train) if batch % main_cfg.eval_every == 0: feed_dict_train = { model.x1: train_mini_sen1, model.x2: train_mini_sen2, model.is_training: False, model.labels: train_mini_labels } train_accuracy, train_summary = session.run( [model.accuracy, model.summary_op], feed_dict=feed_dict_train) log_saver.log_train(train_summary, global_step) feed_dict_dev = { model.x1: dev_sentence1, model.x2: dev_sentence2, model.is_training: False, model.labels: dev_labels } dev_accuracy, dev_summary = session.run( [model.accuracy, model.summary_op], feed_dict=feed_dict_dev) log_saver.log_dev(dev_summary, global_step) tqdm_iter.set_postfix( dev_acc='{:.2f}'.format(float(dev_accuracy)), train_acc='{:.2f}'.format(float(train_accuracy)), loss='{:.2f}'.format(float(loss)), epoch=epoch) if global_step % main_cfg.save_every == 0: model_saver.save(session, global_step=global_step) model_evaluator.evaluate_dev(dev_sentence1, dev_sentence2, dev_labels) end_time = time.time() total_time = timer(start_time, end_time) time_per_epoch.append(total_time) model_saver.save(session, global_step=global_step) feed_dict_train = { model.x1: test_sentence1, model.x2: test_sentence2, model.is_training: False, model.labels: test_labels } #train_accuracy, train_summary, train_e = session.run([model.accuracy, model.summary_op, model.e], # feed_dict=feed_dict_train) train_e = session.run([model.e], feed_dict=feed_dict_train) plt.clf() f = plt.figure(figsize=(8, 8.5)) ax = f.add_subplot(1, 1, 1) i = ax.imshow(train_e[0][0], interpolation='nearest', cmap='gray') cbaxes = f.add_axes([0.2, 0, 0.6, 0.03]) cbar = f.colorbar(i, cax=cbaxes, orientation='horizontal') cbar.ax.set_xlabel('Probability', labelpad=2) f.savefig('attention_maps.pdf', bbox_inches='tight') f.show() plt.show() feed_dict_test = { model.x1: test_sentence1, model.x2: test_sentence2, model.is_training: False, model.labels: test_labels } test_accuracy, test_summary = session.run( [model.accuracy, model.summary_op], feed_dict=feed_dict_test) print('tst_acc:%.2f loss:%.2f', test_accuracy, loss) model_evaluator.evaluate_test(test_sentence1, test_sentence2, test_labels) model_evaluator.save_evaluation( '{}/{}'.format(main_cfg.model_dir, model_name), time_per_epoch[-1], dataset)