コード例 #1
0
def batch_rgbtb(root):
    df = get_trip(root)
    in_dirs = [
        osp.join(root, 'rgbc', 'origin'),
        osp.join(root, 'rgbc', 'derived')
    ]
    dfi = df.applymap(lambda x: osp.join(in_dirs[0], x + '.jpg'))
    dfi[["fo",
         "m"]] = df[["f", "ab"
                     ]].applymap(lambda x: osp.join(in_dirs[1], x + '.jpg'))
    dfi = dfi.to_numpy()

    out_dirs = [
        osp.join(root, 'rgbc', 'thumbnail', 'origin'),
        osp.join(root, 'rgbc', 'thumbnail', 'derived')
    ]
    for d in out_dirs:
        mkdir(d)
    dfo = df.applymap(lambda x: osp.join(out_dirs[0], x + '.jpg'))
    dfo[["fo",
         "m"]] = df[["f", "ab"
                     ]].applymap(lambda x: osp.join(out_dirs[1], x + '.jpg'))
    dfo = dfo.to_numpy()

    with Pool(16, initialize_tbnail, (16, )) as p:
        ares = p.starmap_async(tbnail_rgb, zip(dfi, dfo))
        ares.wait()
コード例 #2
0
def batch_crop_rgb(root):
    df = get_trip(root)
    in_dirs = [
        osp.join(root, 'rgb', 'origin'),
        osp.join(root, 'rgb', 'derived')
    ]
    dfi = df.applymap(lambda x: osp.join(in_dirs[0], x + '.jpg'))
    dfi[["fo",
         "m"]] = df[["f", "ab"
                     ]].applymap(lambda x: osp.join(in_dirs[1], x + '.jpg'))
    dfi = dfi.to_numpy()

    out_dirs = [
        osp.join(root, 'rgbc', 'origin'),
        osp.join(root, 'rgbc', 'derived')
    ]
    for d in out_dirs:
        mkdir(d)
    dfo = df.applymap(lambda x: osp.join(out_dirs[0], x + '.jpg'))
    dfo[["fo",
         "m"]] = df[["f", "ab"
                     ]].applymap(lambda x: osp.join(out_dirs[1], x + '.jpg'))
    dfo = dfo.to_numpy()

    dfbd = (pd.read_csv(osp.join(root,
                                 root + '.csv'))[["w1", "h1", "w2",
                                                  "h2"]]).to_numpy()
    # print(dfi[50])
    # crop_rgb(dfi[50],dfo[50],dfbd[50])
    # return
    with Pool(16) as p:
        ares = p.starmap_async(crop_rgb, zip(dfi, dfo, dfbd))
        ares.wait()
コード例 #3
0
def cvts(root, fm1='dng', fm2='jpg', num_worker=3):
    dir1, dir2 = osp.join(root, fm1), osp.join(root, fm2)
    ls1 = os.listdir(dir1)
    mkdir(dir2)
    outputs = bj(dir2, be(ls1, fm2))
    inputs = bj(dir1, ls1)
    with Pool(num_worker) as p:
        p.starmap_async(convert, zip(inputs, outputs))
コード例 #4
0
    def save(self, filepath: str) -> None:
        df = DataFrame(columns=("num", "rank", "num_batches", "cost"))

        for epoch in self.epochs:
            row = {
                "num": epoch.num,
                "rank": epoch.rank,
                "num_batches": epoch.num_batches,
                "cost": epoch.cost,
            }
            df = df.append(row, ignore_index=True)

        mkdir(filepath)
        df.to_csv(filepath)
コード例 #5
0
def batch5rgb(root: str, processes=16):
    df = get_trip(root)
    dfi = df.applymap(lambda x: osp.join(root, 'raw', x + '.dng')).to_numpy()
    out_dirs = [
        osp.join(root, 'rgb', 'origin'),
        osp.join(root, 'rgb', 'derived')
    ]
    for d in out_dirs:
        mkdir(d)
    dfo = df.applymap(lambda x: osp.join(out_dirs[0], x + '.jpg'))
    dfo[["fo",
         "m"]] = df[["f", "ab"
                     ]].applymap(lambda x: osp.join(out_dirs[1], x + '.jpg'))
    dfo = dfo.to_numpy()

    # get5rgb(dfi[0],dfo[0])
    # return

    with Pool(16) as p:
        ares = p.starmap_async(get5rgb, zip(dfi, dfo))
        ares.wait()
コード例 #6
0
def batch5rawc(root: str, processes=16):
    df = get_trip(root)
    dfi = df.applymap(lambda x: osp.join(root, 'raw', x + '.dng')).to_numpy()
    out_dirs = [
        osp.join(root, 'rawc', 'origin'),
        osp.join(root, 'rawc', 'derived')
    ]
    for d in out_dirs:
        mkdir(d)
    dfo = df.applymap(lambda x: osp.join(out_dirs[0], x + '.png'))
    dfo[["fo",
         "m"]] = df[["f", "ab"
                     ]].applymap(lambda x: osp.join(out_dirs[1], x + '.png'))
    dfo = dfo.to_numpy()
    dfbd = (pd.read_csv(osp.join(root,
                                 root + '.csv'))[["w1", "h1", "w2",
                                                  "h2"]]).to_numpy()

    # get5rawc(dfi[0],dfo[0],dfbd[0])
    # return
    with Pool(16) as p:
        ares = p.starmap_async(get5rawc, zip(dfi, dfo, dfbd))
        ares.wait()