コード例 #1
0
def main(cfg):
    '''Main function to compute matches.

    Parameters
    ----------
    cfg: Namespace
        Configurations for running this part of the code.

    '''

    # Get data directory
    data_dir = get_data_path(cfg)

    # Load pre-computed pairs with the new visibility criteria
    pairs_per_th = get_pairs_per_threshold(data_dir)

    # Check if all files exist
    if is_stereo_complete(cfg):
        print(' -- already exists, skipping stereo eval')
        return

    # Load keypoints and matches
    keypoints_dict = load_h5(get_kp_file(cfg))
    matches_dict = load_h5(get_match_file(cfg))
    geom_dict = load_h5(get_geom_file(cfg))
    geom_inl_dict = load_h5(get_geom_inl_file(cfg))

    filter_matches_dict = load_h5(get_filter_match_file(cfg))

    # Load visiblity and images
    images_list = get_fullpath_list(data_dir, 'images')
    vis_list = get_fullpath_list(data_dir, 'visibility')
    if cfg.dataset != 'googleurban':
        depth_maps_list = get_fullpath_list(data_dir, 'depth_maps')
    image_names = get_item_name_list(images_list)

    # Load camera information
    calib_list = get_fullpath_list(data_dir, 'calibration')
    calib_dict = load_calib(calib_list)

    # Generate all possible pairs
    print('Generating list of all possible pairs')
    pairs = compute_image_pairs(vis_list, len(image_names), cfg.vis_th)
    print('Old pairs with the point-based visibility threshold: {} '
          '(for compatibility)'.format(len(pairs)))
    for k, v in pairs_per_th.items():
        print('New pairs at visibility threshold {}: {}'.format(k, len(v)))

    # Evaluate each stereo pair in parallel
    # Compute it for all pairs (i.e. visibility threshold 0)
    print('Compute stereo metrics for all pairs')
    #num_cores = int(multiprocessing.cpu_count() * 0.9)
    num_cores = int(len(os.sched_getaffinity(0)) * 0.9)

    result = Parallel(n_jobs=num_cores)(delayed(compute_stereo_metrics_from_E)(
        images_list[image_names.index(pair.split('-')[0])], images_list[
            image_names.index(pair.split('-')[1])],
        depth_maps_list[image_names.index(pair.split('-')[0])] if cfg.
        dataset != 'googleurban' else None, depth_maps_list[image_names.index(
            pair.split('-')[1])] if cfg.dataset != 'googleurban' else None,
        np.asarray(keypoints_dict[pair.split('-')[0]]),
        np.asarray(keypoints_dict[pair.split('-')[1]]), calib_dict[pair.split(
            '-')[0]], calib_dict[pair.split('-')
                                 [1]], geom_dict[pair], matches_dict[pair],
        filter_matches_dict[pair], geom_inl_dict[pair], cfg)
                                        for pair in tqdm(pairs_per_th['0.0']))

    # Convert previous visibility list to strings
    old_keys = []
    for pair in pairs:
        old_keys.append('{}-{}'.format(image_names[pair[0]],
                                       image_names[pair[1]]))

    # Extract scores, err_q, err_t from results
    all_keys = pairs_per_th['0.0']
    err_dict, rep_s_dict = {}, {}
    geo_s_dict_pre_match, geo_s_dict_refined_match, \
        geo_s_dict_final_match = {}, {}, {}
    true_s_dict_pre_match, true_s_dict_refined_match, \
        true_s_dict_final_match = {}, {}, {}
    for i in range(len(result)):
        if all_keys[i] in old_keys:
            if result[i][5]:
                geo_s_dict_pre_match[
                    all_keys[i]] = result[i][0][0] if result[i][0] else None
                geo_s_dict_refined_match[
                    all_keys[i]] = result[i][0][1] if result[i][0] else None
                geo_s_dict_final_match[
                    all_keys[i]] = result[i][0][2] if result[i][0] else None
                true_s_dict_pre_match[
                    all_keys[i]] = result[i][1][0] if result[i][1] else None
                true_s_dict_refined_match[
                    all_keys[i]] = result[i][1][1] if result[i][1] else None
                true_s_dict_final_match[
                    all_keys[i]] = result[i][1][2] if result[i][1] else None
                err_q = result[i][2]
                err_t = result[i][3]
                rep_s_dict[all_keys[i]] = result[i][4]
                err_dict[all_keys[i]] = [err_q, err_t]
    print('Aggregating results for the old visibility constraint: '
          '{}/{}'.format(len(geo_s_dict_pre_match), len(result)))

    # Repeat with the new visibility threshold
    err_dict_th, rep_s_dict_th = {}, {}
    geo_s_dict_pre_match_th, geo_s_dict_refined_match_th, \
        geo_s_dict_final_match_th = {}, {}, {}
    true_s_dict_pre_match_th, true_s_dict_refined_match_th, \
        true_s_dict_final_match_th = {}, {}, {}
    for th, cur_pairs in pairs_per_th.items():
        _err_dict, _rep_s_dict = {}, {}
        _geo_s_dict_pre_match, _geo_s_dict_refined_match, \
            _geo_s_dict_final_match = {}, {}, {}
        _true_s_dict_pre_match, _true_s_dict_refined_match, \
            _true_s_dict_final_match = {}, {}, {}
        for i in range(len(all_keys)):
            if len(cur_pairs) > 0 and all_keys[i] in cur_pairs:
                if result[i][5]:
                    _geo_s_dict_pre_match[all_keys[
                        i]] = result[i][0][0] if result[i][0] else None
                    _geo_s_dict_refined_match[all_keys[
                        i]] = result[i][0][1] if result[i][0] else None
                    _geo_s_dict_final_match[all_keys[
                        i]] = result[i][0][2] if result[i][0] else None
                    _true_s_dict_pre_match[all_keys[
                        i]] = result[i][1][0] if result[i][1] else None
                    _true_s_dict_refined_match[all_keys[
                        i]] = result[i][1][1] if result[i][1] else None
                    _true_s_dict_final_match[all_keys[
                        i]] = result[i][1][2] if result[i][1] else None
                    err_q = result[i][2]
                    err_t = result[i][3]
                    _rep_s_dict[
                        all_keys[i]] = result[i][4] if result[i][4] else None
                    _err_dict[all_keys[i]] = [err_q, err_t]
        geo_s_dict_pre_match_th[th] = _geo_s_dict_pre_match
        geo_s_dict_refined_match_th[th] = _geo_s_dict_refined_match
        geo_s_dict_final_match_th[th] = _geo_s_dict_final_match
        true_s_dict_pre_match_th[th] = _true_s_dict_pre_match
        true_s_dict_refined_match_th[th] = _true_s_dict_refined_match
        true_s_dict_final_match_th[th] = _true_s_dict_final_match
        err_dict_th[th] = _err_dict
        rep_s_dict_th[th] = _rep_s_dict
        print('Aggregating results for threshold "{}": {}/{}'.format(
            th, len(geo_s_dict_pre_match_th[th]), len(result)))

    # Create results folder if it does not exist
    if not os.path.exists(get_stereo_path(cfg)):
        os.makedirs(get_stereo_path(cfg))

    # Finally, save packed scores and errors
    if cfg.dataset != 'googleurban':
        save_h5(geo_s_dict_pre_match, get_stereo_epipolar_pre_match_file(cfg))
        save_h5(geo_s_dict_refined_match,
                get_stereo_epipolar_refined_match_file(cfg))
        save_h5(geo_s_dict_final_match,
                get_stereo_epipolar_final_match_file(cfg))

        save_h5(true_s_dict_pre_match,
                get_stereo_depth_projection_pre_match_file(cfg))
        save_h5(true_s_dict_refined_match,
                get_stereo_depth_projection_refined_match_file(cfg))
        save_h5(true_s_dict_final_match,
                get_stereo_depth_projection_final_match_file(cfg))
        save_h5(rep_s_dict, get_repeatability_score_file(cfg))
    save_h5(err_dict, get_stereo_pose_file(cfg))

    for th in pairs_per_th:
        if cfg.dataset != 'googleurban':
            save_h5(geo_s_dict_pre_match_th[th],
                    get_stereo_epipolar_pre_match_file(cfg, th))
            save_h5(geo_s_dict_refined_match_th[th],
                    get_stereo_epipolar_refined_match_file(cfg, th))
            save_h5(geo_s_dict_final_match_th[th],
                    get_stereo_epipolar_final_match_file(cfg, th))
            save_h5(true_s_dict_pre_match_th[th],
                    get_stereo_depth_projection_pre_match_file(cfg, th))
            save_h5(true_s_dict_refined_match_th[th],
                    get_stereo_depth_projection_refined_match_file(cfg, th))
            save_h5(true_s_dict_final_match_th[th],
                    get_stereo_depth_projection_final_match_file(cfg, th))
            save_h5(rep_s_dict_th[th], get_repeatability_score_file(cfg, th))
        save_h5(err_dict_th[th], get_stereo_pose_file(cfg, th))
コード例 #2
0
def main(cfg):
    '''Main function to compute model.

    Parameters
    ----------
    cfg: Namespace
        Configurations for running this part of the code.

    '''

    if os.path.exists(get_geom_file(cfg)):
        print(' -- already exists, skipping model computation')
        return

    # Get data directory
    keypoints_dict = load_h5(get_kp_file(cfg))

    # Load keypoints and matches
    matches_dict = load_h5(get_filter_match_file_for_computing_model(cfg))

    # Feature Matching
    print('Computing model')
    num_cores = cfg.num_opencv_threads if cfg.num_opencv_threads > 0 else int(
        len(os.sched_getaffinity(0)) * 0.9)
    # Load camera information
    data_dir = get_data_path(cfg)
    images_list = get_fullpath_list(data_dir, 'images')
    image_names = get_item_name_list(images_list)

    calib_list = get_fullpath_list(data_dir, 'calibration')
    calib_dict = load_calib(calib_list)
    pairs_per_th = get_pairs_per_threshold(data_dir)

    # Get data directory
    try:
        desc_dict = defaultdict(list)
        desc_dict = load_h5(get_desc_file(cfg))
        for k, v in desc_dict.items():
            desc_dict[k] = v
    except Exception:
        desc_dict = defaultdict(list)

    try:
        aff_dict = defaultdict(list)
        aff_dict1 = load_h5(get_affine_file(cfg))
        for k, v in aff_dict1.items():
            aff_dict[k] = v
    except Exception:
        aff_dict = defaultdict(list)

    try:
        ori_dict = defaultdict(list)
        ori_dict1 = load_h5(get_angle_file(cfg))
        for k, v in ori_dict1.items():
            ori_dict[k] = v
    except Exception:
        ori_dict = defaultdict(list)
    try:
        scale_dict = defaultdict(list)
        scale_dict1 = load_h5(get_scale_file(cfg))
        for k, v in scale_dict1.items():
            scale_dict[k] = v
    except Exception:
        scale_dict = defaultdict(list)

    random.shuffle(pairs_per_th['0.0'])
    result = Parallel(n_jobs=num_cores)(delayed(compute_model)(
        cfg, np.asarray(matches_dict[pair]),
        np.asarray(keypoints_dict[pair.split('-')[0]]),
        np.asarray(keypoints_dict[pair.split('-')[1]]), calib_dict[pair.split(
            '-')[0]], calib_dict[pair.split('-')[1]], images_list[
                image_names.index(pair.split('-')[0])], images_list[
                    image_names.index(pair.split('-')[1])],
        np.asarray(scale_dict[pair.split('-')[0]]),
        np.asarray(scale_dict[pair.split('-')[1]]),
        np.asarray(ori_dict[pair.split('-')[0]]),
        np.asarray(ori_dict[pair.split('-')[1]]),
        np.asarray(aff_dict[pair.split('-')[0]]),
        np.asarray(aff_dict[pair.split('-')[1]]),
        np.asarray(desc_dict[pair.split('-')[0]]),
        np.asarray(desc_dict[pair.split('-')[1]]))
                                        for pair in tqdm(pairs_per_th['0.0']))

    # Make model dictionary
    model_dict = {}
    inl_dict = {}
    timings_list = []
    for i, pair in enumerate(pairs_per_th['0.0']):
        model_dict[pair] = result[i][0]
        inl_dict[pair] = result[i][1]
        timings_list.append(result[i][2])

    # Check model directory
    if not os.path.exists(get_geom_path(cfg)):
        os.makedirs(get_geom_path(cfg))

    # Finally save packed models
    save_h5(model_dict, get_geom_file(cfg))
    save_h5(inl_dict, get_geom_inl_file(cfg))

    # Save computational cost
    save_h5({'cost': np.mean(timings_list)}, get_geom_cost_file(cfg))
    print('Geometry cost (averaged over image pairs): {:0.2f} sec'.format(
        np.mean(timings_list)))
コード例 #3
0
def is_geom_complete(cfg):
    '''Checks if match computation is complete.'''

    is_complete = os.path.exists(get_geom_file(cfg))

    return is_complete