def main(cfg): '''Main function to compute matches. Parameters ---------- cfg: Namespace Configurations for running this part of the code. ''' # Get data directory data_dir = get_data_path(cfg) # Load pre-computed pairs with the new visibility criteria pairs_per_th = get_pairs_per_threshold(data_dir) # Check if all files exist if is_stereo_complete(cfg): print(' -- already exists, skipping stereo eval') return # Load keypoints and matches keypoints_dict = load_h5(get_kp_file(cfg)) matches_dict = load_h5(get_match_file(cfg)) geom_dict = load_h5(get_geom_file(cfg)) geom_inl_dict = load_h5(get_geom_inl_file(cfg)) filter_matches_dict = load_h5(get_filter_match_file(cfg)) # Load visiblity and images images_list = get_fullpath_list(data_dir, 'images') vis_list = get_fullpath_list(data_dir, 'visibility') if cfg.dataset != 'googleurban': depth_maps_list = get_fullpath_list(data_dir, 'depth_maps') image_names = get_item_name_list(images_list) # Load camera information calib_list = get_fullpath_list(data_dir, 'calibration') calib_dict = load_calib(calib_list) # Generate all possible pairs print('Generating list of all possible pairs') pairs = compute_image_pairs(vis_list, len(image_names), cfg.vis_th) print('Old pairs with the point-based visibility threshold: {} ' '(for compatibility)'.format(len(pairs))) for k, v in pairs_per_th.items(): print('New pairs at visibility threshold {}: {}'.format(k, len(v))) # Evaluate each stereo pair in parallel # Compute it for all pairs (i.e. visibility threshold 0) print('Compute stereo metrics for all pairs') #num_cores = int(multiprocessing.cpu_count() * 0.9) num_cores = int(len(os.sched_getaffinity(0)) * 0.9) result = Parallel(n_jobs=num_cores)(delayed(compute_stereo_metrics_from_E)( images_list[image_names.index(pair.split('-')[0])], images_list[ image_names.index(pair.split('-')[1])], depth_maps_list[image_names.index(pair.split('-')[0])] if cfg. dataset != 'googleurban' else None, depth_maps_list[image_names.index( pair.split('-')[1])] if cfg.dataset != 'googleurban' else None, np.asarray(keypoints_dict[pair.split('-')[0]]), np.asarray(keypoints_dict[pair.split('-')[1]]), calib_dict[pair.split( '-')[0]], calib_dict[pair.split('-') [1]], geom_dict[pair], matches_dict[pair], filter_matches_dict[pair], geom_inl_dict[pair], cfg) for pair in tqdm(pairs_per_th['0.0'])) # Convert previous visibility list to strings old_keys = [] for pair in pairs: old_keys.append('{}-{}'.format(image_names[pair[0]], image_names[pair[1]])) # Extract scores, err_q, err_t from results all_keys = pairs_per_th['0.0'] err_dict, rep_s_dict = {}, {} geo_s_dict_pre_match, geo_s_dict_refined_match, \ geo_s_dict_final_match = {}, {}, {} true_s_dict_pre_match, true_s_dict_refined_match, \ true_s_dict_final_match = {}, {}, {} for i in range(len(result)): if all_keys[i] in old_keys: if result[i][5]: geo_s_dict_pre_match[ all_keys[i]] = result[i][0][0] if result[i][0] else None geo_s_dict_refined_match[ all_keys[i]] = result[i][0][1] if result[i][0] else None geo_s_dict_final_match[ all_keys[i]] = result[i][0][2] if result[i][0] else None true_s_dict_pre_match[ all_keys[i]] = result[i][1][0] if result[i][1] else None true_s_dict_refined_match[ all_keys[i]] = result[i][1][1] if result[i][1] else None true_s_dict_final_match[ all_keys[i]] = result[i][1][2] if result[i][1] else None err_q = result[i][2] err_t = result[i][3] rep_s_dict[all_keys[i]] = result[i][4] err_dict[all_keys[i]] = [err_q, err_t] print('Aggregating results for the old visibility constraint: ' '{}/{}'.format(len(geo_s_dict_pre_match), len(result))) # Repeat with the new visibility threshold err_dict_th, rep_s_dict_th = {}, {} geo_s_dict_pre_match_th, geo_s_dict_refined_match_th, \ geo_s_dict_final_match_th = {}, {}, {} true_s_dict_pre_match_th, true_s_dict_refined_match_th, \ true_s_dict_final_match_th = {}, {}, {} for th, cur_pairs in pairs_per_th.items(): _err_dict, _rep_s_dict = {}, {} _geo_s_dict_pre_match, _geo_s_dict_refined_match, \ _geo_s_dict_final_match = {}, {}, {} _true_s_dict_pre_match, _true_s_dict_refined_match, \ _true_s_dict_final_match = {}, {}, {} for i in range(len(all_keys)): if len(cur_pairs) > 0 and all_keys[i] in cur_pairs: if result[i][5]: _geo_s_dict_pre_match[all_keys[ i]] = result[i][0][0] if result[i][0] else None _geo_s_dict_refined_match[all_keys[ i]] = result[i][0][1] if result[i][0] else None _geo_s_dict_final_match[all_keys[ i]] = result[i][0][2] if result[i][0] else None _true_s_dict_pre_match[all_keys[ i]] = result[i][1][0] if result[i][1] else None _true_s_dict_refined_match[all_keys[ i]] = result[i][1][1] if result[i][1] else None _true_s_dict_final_match[all_keys[ i]] = result[i][1][2] if result[i][1] else None err_q = result[i][2] err_t = result[i][3] _rep_s_dict[ all_keys[i]] = result[i][4] if result[i][4] else None _err_dict[all_keys[i]] = [err_q, err_t] geo_s_dict_pre_match_th[th] = _geo_s_dict_pre_match geo_s_dict_refined_match_th[th] = _geo_s_dict_refined_match geo_s_dict_final_match_th[th] = _geo_s_dict_final_match true_s_dict_pre_match_th[th] = _true_s_dict_pre_match true_s_dict_refined_match_th[th] = _true_s_dict_refined_match true_s_dict_final_match_th[th] = _true_s_dict_final_match err_dict_th[th] = _err_dict rep_s_dict_th[th] = _rep_s_dict print('Aggregating results for threshold "{}": {}/{}'.format( th, len(geo_s_dict_pre_match_th[th]), len(result))) # Create results folder if it does not exist if not os.path.exists(get_stereo_path(cfg)): os.makedirs(get_stereo_path(cfg)) # Finally, save packed scores and errors if cfg.dataset != 'googleurban': save_h5(geo_s_dict_pre_match, get_stereo_epipolar_pre_match_file(cfg)) save_h5(geo_s_dict_refined_match, get_stereo_epipolar_refined_match_file(cfg)) save_h5(geo_s_dict_final_match, get_stereo_epipolar_final_match_file(cfg)) save_h5(true_s_dict_pre_match, get_stereo_depth_projection_pre_match_file(cfg)) save_h5(true_s_dict_refined_match, get_stereo_depth_projection_refined_match_file(cfg)) save_h5(true_s_dict_final_match, get_stereo_depth_projection_final_match_file(cfg)) save_h5(rep_s_dict, get_repeatability_score_file(cfg)) save_h5(err_dict, get_stereo_pose_file(cfg)) for th in pairs_per_th: if cfg.dataset != 'googleurban': save_h5(geo_s_dict_pre_match_th[th], get_stereo_epipolar_pre_match_file(cfg, th)) save_h5(geo_s_dict_refined_match_th[th], get_stereo_epipolar_refined_match_file(cfg, th)) save_h5(geo_s_dict_final_match_th[th], get_stereo_epipolar_final_match_file(cfg, th)) save_h5(true_s_dict_pre_match_th[th], get_stereo_depth_projection_pre_match_file(cfg, th)) save_h5(true_s_dict_refined_match_th[th], get_stereo_depth_projection_refined_match_file(cfg, th)) save_h5(true_s_dict_final_match_th[th], get_stereo_depth_projection_final_match_file(cfg, th)) save_h5(rep_s_dict_th[th], get_repeatability_score_file(cfg, th)) save_h5(err_dict_th[th], get_stereo_pose_file(cfg, th))
def main(cfg): '''Main function to compute model. Parameters ---------- cfg: Namespace Configurations for running this part of the code. ''' if os.path.exists(get_geom_file(cfg)): print(' -- already exists, skipping model computation') return # Get data directory keypoints_dict = load_h5(get_kp_file(cfg)) # Load keypoints and matches matches_dict = load_h5(get_filter_match_file_for_computing_model(cfg)) # Feature Matching print('Computing model') num_cores = cfg.num_opencv_threads if cfg.num_opencv_threads > 0 else int( len(os.sched_getaffinity(0)) * 0.9) # Load camera information data_dir = get_data_path(cfg) images_list = get_fullpath_list(data_dir, 'images') image_names = get_item_name_list(images_list) calib_list = get_fullpath_list(data_dir, 'calibration') calib_dict = load_calib(calib_list) pairs_per_th = get_pairs_per_threshold(data_dir) # Get data directory try: desc_dict = defaultdict(list) desc_dict = load_h5(get_desc_file(cfg)) for k, v in desc_dict.items(): desc_dict[k] = v except Exception: desc_dict = defaultdict(list) try: aff_dict = defaultdict(list) aff_dict1 = load_h5(get_affine_file(cfg)) for k, v in aff_dict1.items(): aff_dict[k] = v except Exception: aff_dict = defaultdict(list) try: ori_dict = defaultdict(list) ori_dict1 = load_h5(get_angle_file(cfg)) for k, v in ori_dict1.items(): ori_dict[k] = v except Exception: ori_dict = defaultdict(list) try: scale_dict = defaultdict(list) scale_dict1 = load_h5(get_scale_file(cfg)) for k, v in scale_dict1.items(): scale_dict[k] = v except Exception: scale_dict = defaultdict(list) random.shuffle(pairs_per_th['0.0']) result = Parallel(n_jobs=num_cores)(delayed(compute_model)( cfg, np.asarray(matches_dict[pair]), np.asarray(keypoints_dict[pair.split('-')[0]]), np.asarray(keypoints_dict[pair.split('-')[1]]), calib_dict[pair.split( '-')[0]], calib_dict[pair.split('-')[1]], images_list[ image_names.index(pair.split('-')[0])], images_list[ image_names.index(pair.split('-')[1])], np.asarray(scale_dict[pair.split('-')[0]]), np.asarray(scale_dict[pair.split('-')[1]]), np.asarray(ori_dict[pair.split('-')[0]]), np.asarray(ori_dict[pair.split('-')[1]]), np.asarray(aff_dict[pair.split('-')[0]]), np.asarray(aff_dict[pair.split('-')[1]]), np.asarray(desc_dict[pair.split('-')[0]]), np.asarray(desc_dict[pair.split('-')[1]])) for pair in tqdm(pairs_per_th['0.0'])) # Make model dictionary model_dict = {} inl_dict = {} timings_list = [] for i, pair in enumerate(pairs_per_th['0.0']): model_dict[pair] = result[i][0] inl_dict[pair] = result[i][1] timings_list.append(result[i][2]) # Check model directory if not os.path.exists(get_geom_path(cfg)): os.makedirs(get_geom_path(cfg)) # Finally save packed models save_h5(model_dict, get_geom_file(cfg)) save_h5(inl_dict, get_geom_inl_file(cfg)) # Save computational cost save_h5({'cost': np.mean(timings_list)}, get_geom_cost_file(cfg)) print('Geometry cost (averaged over image pairs): {:0.2f} sec'.format( np.mean(timings_list)))
def is_geom_complete(cfg): '''Checks if match computation is complete.''' is_complete = os.path.exists(get_geom_file(cfg)) return is_complete