def visualize_results(img_path, bboxes, labels, scores, cfg, store_to_path=None): """ Renders the detection results (bboxes and labels) onto the image. :param img_path: the path to the image :param bboxes: the predicted bounding boxes :param labels: the single class label per bounding box :param scores: the probability for the assigned class label per bounding box :param cfg: the configuration :param store_to_path: optional: a path where to store the rendered image. If set to 'None' the image will be displayed on screen. :return: """ from matplotlib.pyplot import imsave, imshow, show from utils.plot_helpers import visualize_detections img = visualize_detections(img_path, bboxes, labels, scores, cfg.IMAGE_WIDTH, cfg.IMAGE_HEIGHT, classes=cfg["DATA"].CLASSES, draw_negative_rois=cfg.DRAW_NEGATIVE_ROIS) if store_to_path is not None: imsave(store_to_path, img) else: imshow(img) show()
def visualize_results(img_path, bboxes, labels, scores, cfg, store_to_path=None): """ Renders the detection results (bboxes and labels) onto the image. :param img_path: the path to the image :param bboxes: the predicted bounding boxes :param labels: the single class label per bounding box :param scores: the probability for the assigned class label per bounding box :param cfg: the configuration :param store_to_path: optional: a path where to store the rendered image. If set to 'None' the image will be displayed on screen. :return: """ from matplotlib.pyplot import imsave, imshow, show from utils.plot_helpers import visualize_detections img = visualize_detections(img_path, bboxes, labels, scores, cfg.IMAGE_WIDTH, cfg.IMAGE_HEIGHT, classes = cfg["DATA"].CLASSES, draw_negative_rois = cfg.DRAW_NEGATIVE_ROIS) if store_to_path is not None: imsave(store_to_path, img) else: imshow(img) show()