コード例 #1
0
ファイル: common.py プロジェクト: sly-ebots/yolov3
    def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
        for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
            str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '
            if pred is not None:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                if show or save or render or crop:
                    for *box, conf, cls in pred:  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
                        else:  # all others
                            plot_one_box(box, im, label=label, color=colors(cls))

            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
            if pprint:
                print(str.rstrip(', '))
            if show:
                im.show(self.files[i])  # show
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
            if render:
                self.imgs[i] = np.asarray(im)
コード例 #2
0
    def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
        for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
            str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '
            if pred.shape[0]:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                if show or save or render or crop:
                    annotator = Annotator(im, pil=not self.ascii)
                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
                        else:  # all others
                            annotator.box_label(box, label, color=colors(cls))
                    im = annotator.im
            else:
                str += '(no detections)'

            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
            if pprint:
                LOGGER.info(str.rstrip(', '))
            if show:
                im.show(self.files[i])  # show
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                if i == self.n - 1:
                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
            if render:
                self.imgs[i] = np.asarray(im)
コード例 #3
0
    def plot(self, im, det):
        '''names = self.names; colors = self.colors
        for *xyxy, conf, c in reversed(det): # (x1,y1,x2,y2,conf,cls)
            c = int(c); label = f'{names[c]} {conf:.2f}' # Add bbox to image
            plot_one_box(xyxy, im, label=label, color=colors[c], line_width=2)#'''

        names = self.names
        from utils.plots import colors
        annotator = Annotator(im, line_width=2, example=str(names))
        for *xyxy, conf, c in reversed(det):  # (x1,y1,x2,y2,conf,cls)
            c = int(c)
            label = f'{names[c]} {conf:.2f}'  # Add bbox to image
            annotator.box_label(xyxy, label, color=colors(c, True))
        im[:] = annotator.result()  #'''

        return {
            names[int(c)]: int((det[:, -1] == c).sum())
            for c in det[:, -1].unique()
        }
コード例 #4
0
 def __call__(self, image, *args, **kwargs):
     img = self.image_preprocess(image)
     """ Inference """
     pred = self.model(img)[0]
     """ Apply NMS """
     det = non_max_suppression(pred, self.conf_thres, self.iou_thres)[0]
     """ Process detections """
     im0 = image.copy()
     s = ''
     bbox_container = []
     if len(det):
         """ Rescale boxes from img_size to im0 size """
         det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                   im0.shape).round()
         """ Print results """
         """ detections per class """
         for c in det[:, -1].unique():
             n = (det[:, -1] == c).sum()
             """ add to string """
             s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
         """ Write results """
         for *xyxy, conf, cls in reversed(det):
             c = int(cls)
             label = f'{self.names[c]} {conf:.2f}'
             """ xyxy: LU --> RD """
             plot_one_box(xyxy,
                          im0,
                          label=label,
                          color=colors(c, True),
                          line_thickness=2)
             bbox = {
                 'class': self.names[c],
                 'confidence': round(conf.item(), 2),
                 'box': [int(v.item()) for v in xyxy]
             }
             bbox_container.append(bbox)
     print(s)
     return bbox_container
コード例 #5
0
ファイル: detect.py プロジェクト: davidsvaughn/yolov5
 def detect_and_annotate(self, img_in):
     detections, img_out = self.get_detections(img_in)
     # Loop over detections
     first = self.names.copy() if self.names else None
     for xywh, xyxy, conf, cls in detections:
         if isinstance(conf, tuple):
             conf = conf[0]
         img_lab = f'{conf:.2f}'
         # Add bbox to image
         c = int(cls)  # integer class
         label = True
         if first and first[c]:
             first[c] = 0
         else:
             label = False
         name = f'{self.names[c]} ' if label else ''
         label = f'{name}{img_lab}'
         plot_one_box(xyxy,
                      img_out,
                      label=label,
                      color=colors(c, True),
                      line_thickness=6)
     return img_out
コード例 #6
0
ファイル: detect.py プロジェクト: davidsvaughn/yolov5
    def run_detections(self, opt):
        image_files = FileIterator(opt.source)

        for k, img_file in enumerate(image_files):
            p = Path(img_file)  # to Path

            if opt.save_dir is None:
                print('save_dir is set to None!')
                sys.exit()
            t1 = time_synchronized()
            detections, img0 = self.get_detections(img_file)  #, opt)
            t2 = time_synchronized()

            if k % 10 == 0: print(k)
            if opt.skip_empty and len(detections) == 0:
                continue

            # Print results to screen(?)
            s = '%gx%g ' % img0.shape[:2]  # print string
            cls_idx = np.array([det[-1].cpu().numpy() for det in detections])
            for c in np.unique(cls_idx):
                n = (cls_idx == c).sum()  # detections per class
                s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string

            save_path = str(opt.save_dir / p.name)
            txt_path = str(opt.save_dir / 'labels' / p.stem)
            first = self.names.copy() if self.names else None

            # Loop over detections
            imc = img0.copy() if opt.save_crop else img0  # for opt.save_crop
            for xywh, xyxy, conf, cls in detections:

                # Write label to txt file
                txt_lab, img_lab = self.format_labels(xywh, cls, conf, opt)
                with open(txt_path + '.txt', 'a') as f:
                    f.write(('%g ' * len(txt_lab)).rstrip() % txt_lab + '\n')

                # Add bbox to image
                if opt.save_img or opt.save_crop:
                    c = int(cls)  # integer class
                    label = True
                    if first and first[c]:
                        first[c] = 0
                    else:
                        label = False
                    name = f'{self.names[c]} ' if label else ''
                    label = None if opt.hide_labels else f'{name}{img_lab}'
                    plot_one_box(xyxy,
                                 img0,
                                 label=label,
                                 color=colors(c, True),
                                 line_thickness=opt.line_thickness)
                    if opt.save_crop:
                        save_one_box(xyxy,
                                     imc,
                                     file=opt.save_dir / 'crops' /
                                     self.names[c] / f'{p.stem}.jpg',
                                     BGR=True)

            print(f'{s}Done. ({t2 - t1:.3f}s)')
            if opt.save_img and len(detections) > 0:
                cv2.imwrite(save_path, img0)

            if len(detections) == 0:
                empty_file(txt_path + '.txt')
コード例 #7
0
def detect(opt):
    source, weights, view_img, imgsz = opt.source, opt.weights, opt.view_img, opt.img_size
    save_dir = 'output'
    file_name = Path(source).name

    source = cv2.VideoCapture(source)
    width = int(source.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(source.get(cv2.CAP_PROP_FRAME_HEIGHT))
    video_writer = cv2.VideoWriter('video_detection.avi', cv2.VideoWriter_fourcc(*'MJPG'), 20, (width, height))
    while True:

        validation, frame = source.read()
        if validation is not True:
            break
        # Load model
        print(validation)

        device = select_device(opt.device)
        model = attempt_load(weights, map_location=device)  # load FP32 model
        stride = int(model.stride.max())  # model stride
        imgsz = check_img_size(imgsz, s=stride)  # check img_size
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names

        if device.type != 'cpu':
            model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once

        img = frame
        original_image = img.copy()
        t0 = time.time()

        # img = cv2.resize(img, (416, 416))
        img = letterbox(img)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(device)
        img = img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        img = img.unsqueeze(0)

        # Inference
        pred = model(img, augment=False)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)

        save_path = os.path.join(save_dir, file_name)
        # Process detections
        for det in pred:  # detections per image
            if len(det):
                # Rescale boxes from img size to original_image size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], original_image.shape).round()

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    c = int(cls)  # integer class
                    label = (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
                    plot_one_box(xyxy, original_image, label=label, color=colors(c, True), line_thickness=2)

        # if view_img:
        cv2.imshow("result", original_image)
        cv2.waitKey(1)  # 1 millisecond

        # Save results (image with detections)
        # cv2.imwrite(save_path, original_image)
        # video_writer.write(original_image)
        # video_writer.release()
    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #8
0
ファイル: prelook.py プロジェクト: acu754/acu754
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)    训练的权重
        source=ROOT /
    'data/images',  # file/dir/URL/glob, 0 for webcam 测试数据,图片/视频路径,'0'摄像头,rtsp视频流
        imgsz=640,  # inference size (pixels) 网络输入图片大小
        conf_thres=0.25,  # confidence threshold 置信度阈值
        iou_thres=0.45,  # NMS IOU threshold nms的iou阈值
        max_det=1000,  # maximum detections per image 分类数
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu 设备
        view_img=True,  # show results 是否展示预测之后的图片/视频
        save_txt=False,  # save results to *.txt 是否将预测的框坐标保持txt格式,默认false
        # save_conf=False,  # save confidences in --save-txt labels 置信度保存
    save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos 不保存
        classes=None,  # filter by class: --class 0, or --class 0 2 3 设置只保留某一部分类别
        agnostic_nms=False,  # class-agnostic NMS 进行nms是否也去除不同类别之间的框
        augment=False,  # augmented inference 图像增强
        visualize=False,  # visualize features 可视化
        # update=False,  # update all models 若ture,则对所有模型进行strip_optimizer操作,去除pt文件中的优化器等信息,默认false
    project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = weights[0] if isinstance(weights, list) else weights
    classify, suffix, suffixes = False, Path(w).suffix.lower(), [
        '.pt', '.onnx', '.tflite', '.pb', ''
    ]
    check_suffix(w, suffixes)  # check weights have acceptable suffix
    pt, onnx, tflite, pb, saved_model = (suffix == x
                                         for x in suffixes)  # backend booleans
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = attempt_load(
            weights,
            map_location=device)  # load FP32 model 加载float32模型,确保图片分辨率能整除32
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(
            model, 'module') else model.names  # get class names
        #设置Float16
        if half:
            model.half()  # to FP16
        # 设置2次分类
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(
                torch.load('resnet50.pt',
                           map_location=device)['model']).to(device).eval()
    # elif onnx:
    #     check_requirements(('onnx', 'onnxruntime'))
    #     import onnxruntime
    #     session = onnxruntime.InferenceSession(w, None)
    else:  # TensorFlow models
        check_requirements(('tensorflow>=2.4.1', ))
        import tensorflow as tf
        if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt

            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(
                    lambda: tf.compat.v1.import_graph_def(gd, name=""),
                    [])  # wrapped import
                return x.prune(
                    tf.nest.map_structure(x.graph.as_graph_element, inputs),
                    tf.nest.map_structure(x.graph.as_graph_element, outputs))

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, 'rb').read())
            frozen_func = wrap_frozen_graph(gd=graph_def,
                                            inputs="x:0",
                                            outputs="Identity:0")
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(
                model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = input_details[0][
                'dtype'] == np.uint8  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    # 通过不同的输入源来设置不同的数据加载方式
    # 摄像头
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    # 图片或视频
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    if pt and device.type != 'cpu':
        # 进行一次前向推理,测试程序是否正常
        model(
            torch.zeros(1, 3, *imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    dt, seen = [0.0, 0.0, 0.0], 0
    '''
    path 图片/视频路径
    img 进行resize+pad之后的图片,如(3,640,512) 格式(c,h,w)
    img0s 原size图片,如(1080,810,3)
    cap 当读取图片时为None,读取视频时为视频源
    '''
    for path, img, im0s, vid_cap in dataset:
        t1 = time_sync()
        if onnx:
            img = img.astype('float32')
        else:
            img = torch.from_numpy(img).to(device)
            # 图片也设置为Float16或者32
            img = img.half() if half else img.float()  # uint8 to fp16/32
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        # 没有batch_size时,在最前面添加一个轴
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        if pt:
            visualize = increment_path(save_dir / Path(path).stem,
                                       mkdir=True) if visualize else False
            '''
            前向传播,返回pred的shape是(1,num_boxes,5+num_class)
            h,w为传入网络图片的高和宽,注意dataset在检测时使用了矩形推理,所以h不一定等于w
            num_boxes = (h/32*w/32+h/16*w/16+h/8*w/8)*3
            例如:图片大小720,1280 -> 15120个boxes = (20*12 + 40*24 + 80*48 = 5040)*3
            pred[...,0:4]为预测框坐标;预测框坐标为xywh
            pred[...,4]为objectness置信度
            pred[...,5:-1]为分类结果
            '''
            pred = model(img, augment=augment, visualize=visualize)[0]
        # elif onnx:
        #     pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
        else:  # tensorflow model (tflite, pb, saved_model)
            imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
            if pb:
                pred = frozen_func(x=tf.constant(imn)).numpy()
            elif saved_model:
                pred = model(imn, training=False).numpy()
            elif tflite:
                if int8:
                    scale, zero_point = input_details[0]['quantization']
                    imn = (imn / scale + zero_point).astype(
                        np.uint8)  # de-scale
                interpreter.set_tensor(input_details[0]['index'], imn)
                interpreter.invoke()
                pred = interpreter.get_tensor(output_details[0]['index'])
                if int8:
                    scale, zero_point = output_details[0]['quantization']
                    pred = (pred.astype(np.float32) -
                            zero_point) * scale  # re-scale
            pred[..., 0] *= imgsz[1]  # x
            pred[..., 1] *= imgsz[0]  # y
            pred[..., 2] *= imgsz[1]  # w
            pred[..., 3] *= imgsz[0]  # h
            pred = torch.tensor(pred)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        '''
        pred:前向传播的输出
        conf_thres:置信度阈值
        iou_thres:iou阈值
        classes:是否只保留特定的类别
        agnostic_nmsL进行nms是否也去除不同类别之间的框
        经过nms后预测框格式,xywh->xyxy(左上角右上角)
        pred是一个列表list[torch.tensor],长度为nms后目标框个数
        每一个torch.tensor的shape为(num_boxes,6),内容为box(4个值)+cunf+cls
        '''
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # 添加二级分类,默认false
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process predictions
        # 对每一张图片处理
        for i, det in enumerate(pred):  # per image
            seen += 1
            # 如果输入源是webcam,则batch_size不为1,取出dataset中的一张图片
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(
                    dataset, 'frame', 0)

            p = Path(p)  # to Path
            # 设置保存图片或视频的路径
            # p是原图片路径
            save_path = str(save_dir / p.name)  # img.jpg
            #设置保存框坐标txt文件的路径
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            # 设置打印信息(图片宽高),s如'640*512'
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0,
                                  line_width=line_thickness,
                                  example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                # 调整预测框坐标,基于resize+pad的图片坐标->基于原size图片坐标
                # 此时坐标格式为xyxy
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                # 打印检测到的类别数量
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                # 保存预测结果
                for *xyxy, conf, cls in reversed(det):
                    # if save_txt:  # Write to file
                    #     # 将xyxy格式转为xywh格式,并除上我w,h作归一化,转化为列表再保存
                    #     xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    #     line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                    #     with open(txt_path + '.txt', 'a') as f:
                    #         f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Print time (inference-only)

            # print(f'{pred[0][0][0].tolist()} {pred[0][0][1].tolist()} {s}Done. ({t3 - t2:.3f}s)')

            # Stream results
            im0 = annotator.result()
            # xxx = (pred[0][0][0].tolist()+pred[0][0][2].tolist())/2
            # yyy = (pred[0][0][1].tolist()+pred[0][0][3].tolist())/2
            if view_img:
                # + / 2 +
                cv2.imshow(str(p), im0)
                cv2.moveWindow(str(p), 0, 0)
                # pyautogui.moveTo(xxx, yyy)
                cv2.waitKey(1000)  # 1 millisecond

            # Save results (image with detections)
            # if save_img:
            #     if dataset.mode == 'image':
            #         cv2.imwrite(save_path, im0)
            #     else:  # 'video' or 'stream'
            #         if vid_path[i] != save_path:  # new video
            #             vid_path[i] = save_path
            #             if isinstance(vid_writer[i], cv2.VideoWriter):
            #                 vid_writer[i].release()  # release previous video writer
            #             if vid_cap:  # video
            #                 fps = vid_cap.get(cv2.CAP_PROP_FPS)
            #                 w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            #                 h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            #             else:  # stream
            #                 fps, w, h = 30, im0.shape[1], im0.shape[0]
            #                 save_path += '.mp4'
            #             vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
            #         vid_writer[i].write(im0)

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    print(
        f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}'
        % t)
コード例 #9
0
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = str(weights[0] if isinstance(weights, list) else weights)
    classify, suffix, suffixes = False, Path(w).suffix.lower(), [
        '.pt', '.onnx', '.tflite', '.pb', ''
    ]
    check_suffix(w, suffixes)  # check weights have acceptable suffix
    pt, onnx, tflite, pb, saved_model = (suffix == x
                                         for x in suffixes)  # backend booleans
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = torch.jit.load(w) if 'torchscript' in w else attempt_load(
            weights, map_location=device, fuse=False)
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(
            model, 'module') else model.names  # get class names
        """
        for _, param in enumerate(model.named_parameters()):
            print("====>", param[0], param[1].shape)
        torch.save(model.state_dict(), 'new_params.pt')

        for k, v in model.state_dict().items():
            print(k, v.shape)
        exit()
    
        """

        if half:
            model.half()  # to FP16
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(
                torch.load('resnet50.pt',
                           map_location=device)['model']).to(device).eval()
    elif onnx:
        if dnn:
            # check_requirements(('opencv-python>=4.5.4',))
            net = cv2.dnn.readNetFromONNX(w)
        else:
            check_requirements(('onnx', 'onnxruntime'))
            import onnxruntime
            session = onnxruntime.InferenceSession(w, None)
    else:  # TensorFlow models
        check_requirements(('tensorflow>=2.4.1', ))
        import tensorflow as tf
        if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt

            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(
                    lambda: tf.compat.v1.import_graph_def(gd, name=""),
                    [])  # wrapped import
                return x.prune(
                    tf.nest.map_structure(x.graph.as_graph_element, inputs),
                    tf.nest.map_structure(x.graph.as_graph_element, outputs))

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, 'rb').read())
            frozen_func = wrap_frozen_graph(gd=graph_def,
                                            inputs="x:0",
                                            outputs="Identity:0")
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(
                model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = input_details[0][
                'dtype'] == np.uint8  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    if pt and device.type != 'cpu':
        model(
            torch.zeros(1, 3, *imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, img, im0s, vid_cap in dataset:
        t1 = time_sync()
        if onnx:
            img = img.astype('float32')
        else:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        if pt:
            visualize = increment_path(save_dir / Path(path).stem,
                                       mkdir=True) if visualize else False
            pred = model(img, augment=augment, visualize=visualize)[0]
            anchor_grid = model.model[-1].anchors * model.model[-1].stride[
                ..., None, None]
            delattr(model.model[-1],
                    'anchor_grid')  # model.model[-1] is detect layer
            model.model[-1].register_buffer("anchor_grid", anchor_grid)
            model.to(device).eval()
            wts_file = "generated.wts"
            with open(wts_file, 'w') as f:
                f.write('{}\n'.format(len(model.state_dict().keys())))
                for k, v in model.state_dict().items():
                    if len(v.shape) == 0:
                        continue

                    print(k, v.shape)
                    vr = v.reshape(-1).cpu().numpy()
                    f.write('{} {} {} {}'.format(
                        k, len(vr), v.shape[0],
                        v.shape[1] if len(v.shape) > 1 else 0))
                    for vv in vr:
                        f.write(' ')
                        f.write(struct.pack('>f', float(vv)).hex())
                    f.write('\n')
            exit()

        elif onnx:
            if dnn:
                net.setInput(img)
                pred = torch.tensor(net.forward())
            else:
                pred = torch.tensor(
                    session.run([session.get_outputs()[0].name],
                                {session.get_inputs()[0].name: img}))
        else:  # tensorflow model (tflite, pb, saved_model)
            imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
            if pb:
                pred = frozen_func(x=tf.constant(imn)).numpy()
            elif saved_model:
                pred = model(imn, training=False).numpy()
            elif tflite:
                if int8:
                    scale, zero_point = input_details[0]['quantization']
                    imn = (imn / scale + zero_point).astype(
                        np.uint8)  # de-scale
                interpreter.set_tensor(input_details[0]['index'], imn)
                interpreter.invoke()
                pred = interpreter.get_tensor(output_details[0]['index'])
                if int8:
                    scale, zero_point = output_details[0]['quantization']
                    pred = (pred.astype(np.float32) -
                            zero_point) * scale  # re-scale
            pred[..., 0] *= imgsz[1]  # x
            pred[..., 1] *= imgsz[0]  # y
            pred[..., 2] *= imgsz[1]  # w
            pred[..., 3] *= imgsz[0]  # h
            pred = torch.tensor(pred)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(
                    dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0,
                                  line_width=line_thickness,
                                  example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Print time (inference-only)
            print(f'{s}Done. ({t3 - t2:.3f}s)')

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer[i] = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer[i].write(im0)

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    print(
        f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}'
        % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
コード例 #10
0
ファイル: detect.py プロジェクト: Aditya-Sihmar/women_safety
def detect(opt):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    save_img = not opt.nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(opt.project) / opt.name,
                              exist_ok=opt.exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(
                    dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or opt.save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if opt.hide_labels else (
                            names[c]
                            if opt.hide_conf else f'{names[c]} {conf:.2f}')

                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors(c, True),
                                     line_thickness=opt.line_thickness)
                        if opt.save_crop:
                            save_one_box(xyxy,
                                         im0s,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #11
0
ファイル: detect.py プロジェクト: gincus/yolov5
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url
                                                               and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights,
                               device=device,
                               dnn=dnn,
                               data=data,
                               fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem,
                                   mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0,
                                  line_width=line_thickness,
                                  example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(f'{txt_path}.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:
                        save_one_box(xyxy,
                                     imc,
                                     file=save_dir / 'crops' / names[c] /
                                     f'{p.stem}.jpg',
                                     BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(
                            '.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(
        f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}'
        % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
コード例 #12
0
ファイル: detect_realsense.py プロジェクト: Pointcloud/yolov5
def detect(
        weights='yolov5s.pt',  # model.pt path(s)
        source='data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        update=False,  # update all models
        project='runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))
    realsense = "realsense" in source

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet50', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('resnet50.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    elif realsense:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadRealSense2(width=640, height=480, fps=15, img_size=imgsz)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, depth, distance, depth_scale, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(
                    dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):

                    # Splitting xyxy* (measurement)
                    xmin = int(xyxy[0])
                    ymin = int(xyxy[1])
                    xmax = int(xyxy[2])
                    ymax = int(xyxy[3])

                    # Calculating depth of centroid of the object (in Pixel)
                    xc = int(round(((xmax + xmin) / 2), 0))
                    yc = int(round(((ymax + ymin) / 2), 0))
                    object_depth = depth[xc, yc]
                    object_distance = distance[xc, yc]
                    print("object depth:")
                    print(object_depth)
                    print("object distance:")
                    print(object_distance)

                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors(c, True),
                                     line_thickness=line_thickness)
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #13
0
def apply(opt):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images

    # Directories
    save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
    (save_dir / 'data' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)

    with (save_dir / f"params_{Path(opt.source).name}.json").open("w") as f:
        f.write(json.dumps(opt.__dict__, indent=4))

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    names = model.module.names if hasattr(model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    dataset = LoadRiceImages(source, img_size=imgsz, stride=stride, dshape=opt.dshape, ishape=opt.ishape)

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    my = None
    for path, imgs, imgs0, _, big_img in dataset:
        path = Path(path)
        ori_img = cv2.imread(str(path))
        save_path = str(save_dir / path.name)
        txt_path = str(save_dir / "labels" / f"{path.stem}.csv")
        data_path = str(save_dir / "data" / f"{path.stem}.csv")
        coords = []
        img_type = str(path.name)[0].lower()
        for r in range(imgs.shape[0]):
            for c in range(imgs.shape[1]):
                conf_thres = opt.i_conf_thres if img_type == "i" else opt.d_conf_thres
                img = imgs[r, c]
                im0s = imgs0[r, c]
                img = torch.from_numpy(img).to(device)
                img = img.half() if half else img.float()  # uint8 to fp16/32
                img /= 255.0  # 0 - 255 to 0.0 - 1.0
                if img.ndimension() == 3:
                    img = img.unsqueeze(0)

                # Inference
                t1 = time_synchronized()
                pred = model(img, augment=opt.augment)[0]
                # Apply NMS
                pred = non_max_suppression(pred, conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
                t2 = time_synchronized()
                # Process detections
                for i, det in enumerate(pred):  # detections per image
                    p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)

                    p = Path(p)  # to Path
                    s += '%gx%g ' % img.shape[2:]  # print string
                    gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                    if len(det):
                        # Rescale boxes from img_size to im0 size
                        # det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                        # Print results
                        for cl in det[:, -1].unique():
                            n = (det[:, -1] == cl).sum()  # detections per class
                            s += f"{n} {names[int(cl)]}{'s' * (n > 1)}, "  # add to string

                        # Write results
                        for *xyxy, conf, cl in reversed(det):
                            print(xyxy)
                            # sys.exit(0)
                            if save_txt:  # Write to file
                                xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                                x, y = xywh[:2]
                                x, y = x * im0.shape[1], y * im0.shape[0]
                                x += c * im0.shape[1]
                                y += r * im0.shape[0]
                                cl = cl.cpu()
                                # Only append if the predicted class matches the img_type
                                if (cl == 0 and img_type == "i") or (cl == 1 and img_type == "d"): 
                                    coords.append(np.array((conf.cpu().item() * 100, x, y, cl)))
                            if save_img or view_img:  # Add bbox to image
                                c = int(cl)  # integer class
                                label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
                                plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)

                    # Print time (inference + NMS)
                    print(f'{s}Done. ({t2 - t1:.3f}s)')

                    # Save results (image with detections)
                    if save_img:
                        if dataset.mode == 'image':
                            cv2.imwrite('out_old.jpg', im0)
                    sys.exit(0)
        v_grid_starts, h_grid_starts = [], []
        if opt.grid:
            x = imgs[0, 0].shape[2]
            while x < ori_img.shape[1]:
                v_grid_starts.append(x)
                x += imgs[0, 0].shape[2]
            y = imgs[0, 0].shape[1]
            while y < ori_img.shape[0]:
                h_grid_starts.append(y)
                y += imgs[0, 0].shape[1]
        v_grid_starts, h_grid_starts = np.array(v_grid_starts, dtype=float), np.array(h_grid_starts, dtype=float) 
        # imgs[0, 0].shape is (c, h, w)
        scale_x = ori_img.shape[1] / (imgs.shape[1] * imgs[0, 0].shape[2])
        scale_y = ori_img.shape[0] / (imgs.shape[0] * imgs[0, 0].shape[1])
        coords = np.array(coords)
        coords[:, 1] *= scale_x
        coords[:, 2] *= scale_y
        coords = np.around(coords).astype(int)
        close_tol = opt.i_close if img_type == "i" else opt.d_close
        v_grid_starts *= scale_x
        h_grid_starts *= scale_y
        v_grid_starts, h_grid_starts = np.around(v_grid_starts).astype(int), np.around(h_grid_starts).astype(int)
        axis_expand = opt.i_axis_expand if img_type == "i" else opt.d_axis_expand
        coords = filter_too_close(coords, tolerance=close_tol, h_axis=h_grid_starts, v_axis=v_grid_starts, axis_expand=axis_expand)
        coords = filter_border(coords, ori_img.shape, tolerance=opt.border)
        gt_path = path.parent / f"{path.stem}.csv"
        if save_txt:
            with open(txt_path, "w") as f:
                np.savetxt(f, coords[:, 1:3], fmt="%d", delimiter=",")
            with open(data_path, "w") as f:
                np.savetxt(f, coords[:, 0:3], fmt="%d", delimiter=",")
        if save_img:
            if "border" in vars(opt) and opt.border > 0:
                ori_img = draw_border(ori_img, opt.border)
            if opt.grid:
                ori_img = draw_grid(ori_img, v_grid_starts, h_grid_starts)
            if opt.with_gt:
                gts = np.loadtxt(gt_path, dtype=int, delimiter=",", ndmin=2)
                for x, y in gts:
                    ori_img = cv2.circle(ori_img, (x, y), 9, (255, 255, 255), 2)
            for conf, x, y, cl in coords:
                if cl == 0:
                    circle_color = (255, 0, 0)
                elif cl == 1:
                    circle_color = (0, 0, 255)
                if not opt.hide_conf:
                    # print(conf)
                    ori_img = cv2.putText(ori_img, f"{conf}%", (x, y - 3), 0, 1, (255, 255, 0), 2)
                ori_img = cv2.circle(ori_img, (x, y), 4, circle_color, -1)

            cv2.imwrite(save_path, ori_img)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #14
0
    def detect_image(
            self,
            img_cv,
            conf_thres=0.25,  # confidence threshold
            iou_thres=0.45,  # NMS IOU threshold
            max_det=1000,  # maximum detections per image
            classes=None,
            agnostic_nms=False,  # class-agnostic NMS
            line_thickness=3,  # bounding box thickness (pixels)
            hide_labels=False,  # hide labels
            hide_conf=False,  # hide confidences
    ):

        device = select_device('')
        ### Preprocess based on what inside LoadImages
        # Padded resize
        img = letterbox(img_cv, 640, stride=32)[0]

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)
        ### Preprocess finish

        img = torch.from_numpy(img).to(device)
        img = img.float()
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim

        # Inference
        pred = self.model(img, augment=False, visualize=False)[0]

        # NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)

        # Process predictions
        bbox_pred = []
        s, im0 = '', img_cv.copy()
        for i, det in enumerate(pred):  # detections per image
            s += '%gx%g ' % img.shape[2:]  # print string
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Visualize results
                for *xyxy, conf, cls in reversed(det):
                    c = int(cls)  # integer class
                    label = None if hide_labels else (
                        self.names[c]
                        if hide_conf else f'{self.names[c]} {conf:.2f}')
                    plot_one_box(xyxy,
                                 im0,
                                 label=label,
                                 color=colors(c, True),
                                 line_thickness=line_thickness)

            bbox_pred.append(
                det.cpu().numpy()[:, :-1]
            )  # bbox pred after rescaled back to the original image size

        return bbox_pred[0], im0
コード例 #15
0
ファイル: demo_detect.py プロジェクト: bkhti4/yolov5
                                              0]]  # normalization gain whwh
            for i, det in enumerate(pred):
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              out_img.shape).round()

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        if opt.show:  # Add bbox to image
                            c = int(cls)  # integer class
                            label = f'{names[c]} {conf:.2f}'
                            plot_one_box(xyxy,
                                         out_img,
                                         label=label,
                                         color=colors(c, True),
                                         line_thickness=opt.line_thickness)

            t1 = time.time()
            t2 = time.time()

            times_infer.append(t1 - t0)
            times_pipe.append(t2 - t0)

            times_infer = times_infer[-20:]
            times_pipe = times_pipe[-20:]

            ms = sum(times_infer) / len(times_infer) * 1000
            fps_infer = 1000 / (ms + 0.00001)
            fps_pipe = 1000 / (sum(times_pipe) / len(times_pipe) * 1000)
コード例 #16
0
ファイル: my_detect.py プロジェクト: liuyunhaozz/yolov5
def run(weights='yolov5s.pt',  # model.pt path(s)
        source='data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project='runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        ):
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))


    sheet = pd.DataFrame()


    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = weights[0] if isinstance(weights, list) else weights
    classify, pt, onnx = False, w.endswith('.pt'), w.endswith('.onnx')  # inference type
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = attempt_load(weights, map_location=device)  # load FP32 model
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names
        if half:
            model.half()  # to FP16
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
    elif onnx:
        check_requirements(('onnx', 'onnxruntime'))
        import onnxruntime
        session = onnxruntime.InferenceSession(w, None)
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    if pt and device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        # print(path)
        # sys.exit(0)
        if pt:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
        elif onnx:
            img = img.astype('float32')
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim

        # Inference
        t1 = time_sync()
        if pt:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(img, augment=augment, visualize=visualize)[0]
        elif onnx:
            pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        t2 = time_sync()

        # Second-stage classifier (optional)
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

    
        # Process predictions
        # print(len(pred))
        for i, det in enumerate(pred):  # detections per image
            # print(det.shape)
            # sys.exit(0)
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        # xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        # line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        # with open(txt_path + '.txt', 'a') as f:
                        #     f.write(('%g ' * len(line)).rstrip() % line + '\n')
                        lst = torch.tensor(xyxy).tolist()
                        # print(i)
                        dic = dict(name=names[int(cls)], image_id=str(path.split('\\')[-1].split('.')[0]), confidence=float(conf), xmin=int(lst[0]), ymin=int(lst[1]), xmax=int(lst[2]), ymax=int(lst[3]))
                        sheet = sheet.append(dic, ignore_index=True)
                        # print(dic)
                        # sys.exit(0)
                        # print(dic)
                        # sys.exit(0)
                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
                # print(sheet)
                # sys.exit(0)
            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
    cols=['name', 'image_id', 'confidence', 'xmin', 'ymin', 'xmax', 'ymax']
    sheet = sheet.loc[:, cols]
    # sheet = sheet.set_index('name')
    sheet.to_csv('result.csv', index=False)
    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #17
0
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)    训练的权重
        imgsz=[640, 640],  # inference size (pixels) 网络输入图片大小
        conf_thres=0.25,  # confidence threshold 置信度阈值
        iou_thres=0.45,  # NMS IOU threshold nms的iou阈值
        max_det=1000,  # maximum detections per image 分类数
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu 设备
        view_img=True,  # show results 是否展示预测之后的图片/视频
        classes=None,  # filter by class: --class 0, or --class 0 2 3 设置只保留某一部分类别
        agnostic_nms=False,  # class-agnostic NMS 进行nms是否也去除不同类别之间的框
        augment=False,  # augmented inference 图像增强
        visualize=False,  # visualize features 可视化
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = weights[0] if isinstance(weights, list) else weights
    classify, suffix, suffixes = False, Path(w).suffix.lower(), [
        '.pt', '.onnx', '.tflite', '.pb', ''
    ]
    check_suffix(w, suffixes)  # check weights have acceptable suffix
    pt, onnx, tflite, pb, saved_model = (suffix == x
                                         for x in suffixes)  # backend booleans
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = attempt_load(
            weights,
            map_location=device)  # load FP32 model 加载float32模型,确保图片分辨率能整除32
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(
            model, 'module') else model.names  # get class names
        #设置Float16
        if half:
            model.half()  # to FP16
        # 设置2次分类
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(
                torch.load('resnet50.pt',
                           map_location=device)['model']).to(device).eval()
    else:  # TensorFlow models
        check_requirements(('tensorflow>=2.4.1', ))
        import tensorflow as tf
        if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt

            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(
                    lambda: tf.compat.v1.import_graph_def(gd, name=""),
                    [])  # wrapped import
                return x.prune(
                    tf.nest.map_structure(x.graph.as_graph_element, inputs),
                    tf.nest.map_structure(x.graph.as_graph_element, outputs))

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, 'rb').read())
            frozen_func = wrap_frozen_graph(gd=graph_def,
                                            inputs="x:0",
                                            outputs="Identity:0")
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(
                model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = input_details[0][
                'dtype'] == np.uint8  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    # 图片或视频
    tmp = False
    tmp2 = False
    mon = {'top': 0, 'left': 0, 'width': 960, 'height': 960}

    while True:
        im = np.array(mss().grab(mon))
        screen = cv2.cvtColor(im, cv2.COLOR_BGRA2BGR)
        dataset = LoadImages(screen, img_size=imgsz, stride=stride, auto=pt)
        dt, seen = [0.0, 0.0, 0.0], 0
        '''
        path 图片/视频路径
        img 进行resize+pad之后的图片,如(3,640,512) 格式(c,h,w)
        img0s 原size图片,如(1080,810,3)
        cap 当读取图片时为None,读取视频时为视频源
        '''

        for img, im0s, vid_cap in dataset:
            t1 = time_sync()
            if onnx:
                img = img.astype('float32')
            else:
                img = torch.from_numpy(img).to(device)
                # print(img)
                # 图片也设置为Float16或者32
                img = img.half() if half else img.float()  # uint8 to fp16/32
            img = img / 255.0  # 0 - 255 to 0.0 - 1.0
            # 没有batch_size时,在最前面添加一个轴
            if len(img.shape) == 3:
                img = img[None]  # expand for batch dim
            t2 = time_sync()
            dt[0] += t2 - t1

            # Inference
            if pt:
                '''
                前向传播,返回pred的shape是(1,num_boxes,5+num_class)
                h,w为传入网络图片的高和宽,注意dataset在检测时使用了矩形推理,所以h不一定等于w
                num_boxes = (h/32*w/32+h/16*w/16+h/8*w/8)*3
                例如:图片大小720,1280 -> 15120个boxes = (20*12 + 40*24 + 80*48 = 5040)*3
                pred[...,0:4]为预测框坐标;预测框坐标为xywh
                pred[...,4]为objectness置信度
                pred[...,5:-1]为分类结果
                '''
                pred = model(img, augment=augment, visualize=visualize)[0]

            else:  # tensorflow model (tflite, pb, saved_model)
                imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
                if pb:
                    pred = frozen_func(x=tf.constant(imn)).numpy()
                elif saved_model:
                    pred = model(imn, training=False).numpy()
                elif tflite:
                    if int8:
                        scale, zero_point = input_details[0]['quantization']
                        imn = (imn / scale + zero_point).astype(
                            np.uint8)  # de-scale
                    interpreter.set_tensor(input_details[0]['index'], imn)
                    interpreter.invoke()
                    pred = interpreter.get_tensor(output_details[0]['index'])
                    if int8:
                        scale, zero_point = output_details[0]['quantization']
                        pred = (pred.astype(np.float32) -
                                zero_point) * scale  # re-scale
                pred[..., 0] *= imgsz[1]  # x
                pred[..., 1] *= imgsz[0]  # y
                pred[..., 2] *= imgsz[1]  # w
                pred[..., 3] *= imgsz[0]  # h
                pred = torch.tensor(pred)
            t3 = time_sync()
            dt[1] += t3 - t2

            # NMS
            '''
            pred:前向传播的输出
            conf_thres:置信度阈值
            iou_thres:iou阈值
            classes:是否只保留特定的类别
            agnostic_nmsL进行nms是否也去除不同类别之间的框
            经过nms后预测框格式,xywh->xyxy(左上角右上角)
            pred是一个列表list[torch.tensor],长度为nms后目标框个数
            每一个torch.tensor的shape为(num_boxes,6),内容为box(4个值)+cunf+cls
            '''
            pred = non_max_suppression(pred,
                                       conf_thres,
                                       iou_thres,
                                       classes,
                                       agnostic_nms,
                                       max_det=max_det)
            dt[2] += time_sync() - t3

            # Second-stage classifier (optional)
            # 添加二级分类,默认false
            # if classify:
            #     pred = apply_classifier(pred, modelc, img, im0s)

            # Process predictions
            # 对每一张图片处理
            for i, det in enumerate(pred):  # per image
                seen += 1
                s, im0 = '', im0s.copy()
                # 设置打印信息(图片宽高),s如'640*512'
                s += '%gx%g ' % img.shape[2:]  # print string
                annotator = Annotator(im0,
                                      line_width=line_thickness,
                                      example=str(names))
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    # 调整预测框坐标,基于resize+pad的图片坐标->基于原size图片坐标
                    # 此时坐标格式为xyxy
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    # Print results
                    # 打印检测到的类别数量
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                    # Write results
                    # 保存预测结果
                    for *xyxy, conf, cls in reversed(det):
                        if view_img:  # Add bbox to image
                            c = int(cls)  # integer class
                            label = None if hide_labels else (
                                names[c]
                                if hide_conf else f'{names[c]} {conf:.2f}')
                            annotator.box_label(xyxy,
                                                label,
                                                color=colors(c, True))
                # Stream results
                im0 = annotator.result()
                cv2.imshow('a crop of the screen', im0)
                cv2.moveWindow('a crop of the screen', 960, 0)
                if cv2.waitKey(1) & 0xff == ord('q'):
                    tmp = True
                    break
            if tmp:
                tmp2 = True
                break
        if tmp2:
            break
コード例 #18
0
    
    gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
    imc = img0.copy()  # for save_crop
    annotator = Annotator(im0, line_width=line_thickness)
    if len(det):
        # Rescale boxes from img_size to im0 size
        det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

        # Print results
        for c in det[:, -1].unique():
            n = (det[:, -1] == c).sum()  # detections per class
            #s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

        # Write results
        for *xyxy, conf, cls in reversed(det):
                 # Add bbox to image
            c = int(cls)  # integer class
            #label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
            label= None
            annotator.box_label(xyxy, label, color=colors(c, True))
            
    # Stream results
    im0 = annotator.result()
    if True:
        cv2.imwrite("pred.jpg", im0)
        cv2.waitKey(0)  # 1 millisecond

    


コード例 #19
0
def run(
        weights='yolov5s.pt',  # model.pt path(s)
        source='./test_1',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # = device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labelss
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        update=False,  # update all models
        project='runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):
    desire_param = []
    coor = []
    all_info = []
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet50', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('resnet50.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()

    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            p, s, im0, frame = path, '', im0s.copy(), getattr(
                dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            #print()

            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()
                # Print results
                pr = ' '
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
                    pr += f"{n} {names[int(c)]}{'s' * (n > 1)},"

                desire_param.append({"image_id": p.name, "prediction": pr})

                # for img_name in enumerate(p.name):
                #     if img_name not in desire_param:
                #         add_image = (img_name, "predictioni 0")
                # desire_param.append(add_image)

                # print(desire_param)

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors(c, True),
                                     line_thickness=line_thickness)
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Print time (inference + NMS)
        # print(f'{s}Done. ({t2 - t1:.3f}s)')
            result = [(f'{s}Done. ({t2 - t1:.3f}s)')]
            print(result)
            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:
                    None
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

    print(f'Done. ({time.time() - t0:.3f}s)')

    # lst = []
    # for child in desire_param:
    #     info = ["img_name", "prediction"]
    #     lst1 = {k: v for k, v in zip(info, child)}
    #     lst.append(lst1)

    with open('result.json', 'w') as f:
        json.dump(desire_param, f)
コード例 #20
0
ファイル: common.py プロジェクト: rkuo2000/yolov5
    def display(self,
                pprint=False,
                show=False,
                save=False,
                crop=False,
                render=False,
                labels=True,
                save_dir=Path('')):
        crops = []
        for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
            s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
            if pred.shape[0]:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                if show or save or render or crop:
                    annotator = Annotator(im, example=str(self.names))
                    for *box, conf, cls in reversed(
                            pred):  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            file = save_dir / 'crops' / self.names[int(
                                cls)] / self.files[i] if save else None
                            crops.append({
                                'box':
                                box,
                                'conf':
                                conf,
                                'cls':
                                cls,
                                'label':
                                label,
                                'im':
                                save_one_box(box, im, file=file, save=save)
                            })
                        else:  # all others
                            annotator.box_label(box,
                                                label if labels else '',
                                                color=colors(cls))
                    im = annotator.im
            else:
                s += '(no detections)'

            im = Image.fromarray(im.astype(np.uint8)) if isinstance(
                im, np.ndarray) else im  # from np
            if pprint:
                print(s.rstrip(', '))
            if show:
                im.show(self.files[i])  # show
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                if i == self.n - 1:
                    LOGGER.info(
                        f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}"
                    )
            if render:
                self.imgs[i] = np.asarray(im)
        if crop:
            if save:
                LOGGER.info(f'Saved results to {save_dir}\n')
            return crops
コード例 #21
0
def detect(path_request):

    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='last_ufpr.pt', help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    opt = parser.parse_args()
    #print(opt)
    check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))

















    source, weights, view_img, save_txt, imgsz = path_request, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images
    dataset = LoadImages(source, img_size=imgsz, stride=stride)
    webcam = False
    
    # Directories
    save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)


        #print("Predicted",pred)
        # Process detections

        dict_prediction = {}

        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if opt.save_crop else im0  # for opt.save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
                ans = ""
                
                class_cat = []
                class_conf = []
                for i,c in enumerate(det[:, -1]):
                    if names[int(c)] == "car" or names[int(c)] == "plate" or names[int(c)] == "motorcycle":
                        ans+=f"{names[int(c)]}, "
                for i,c in enumerate(det[:, -1]):
                    class_cat.append(int(c))
                for i,c in enumerate(det[:, -2]):
                    class_conf.append(float(c))
                print("all",class_cat,class_conf)
                # Print results
                for c in det[:, -1].unique():
                    #print(c)
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                #print("results:",s)

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or opt.save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)
                        if opt.save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

    # dict_prediction["class_cat"] = "".join((str(value) for value in class_cat))
    print("ans",ans)
    dict_prediction["class_cat"] = ans
    dict_prediction["class_conf"] = "".join((str(value) for value in class_conf))
    json_data = json.dumps(dict_prediction)
    return json_data


# if __name__ == '__main__':
#     parser = argparse.ArgumentParser()
#     parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
#     parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcam
#     parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
#     parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
#     parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
#     parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
#     parser.add_argument('--view-img', action='store_true', help='display results')
#     parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
#     parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
#     parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
#     parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
#     parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
#     parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
#     parser.add_argument('--augment', action='store_true', help='augmented inference')
#     parser.add_argument('--update', action='store_true', help='update all models')
#     parser.add_argument('--project', default='runs/detect', help='save results to project/name')
#     parser.add_argument('--name', default='exp', help='save results to project/name')
#     parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
#     parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
#     parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
#     parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
#     opt = parser.parse_args()
#     print(opt)
#     check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))

#     with torch.no_grad():
#         if opt.update:  # update all models (to fix SourceChangeWarning)
#             for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
#                 detect(opt=opt)
#                 strip_optimizer(opt.weights)
#         else:
#             detect(opt=opt)

#model.load_state_dict(model['state_dict'])
### now you can evaluate it
#model.eval()
#model.eval()
コード例 #22
0
ファイル: pose-detect.py プロジェクト: acgandhi/spider-sense
def detect(
        model="mobilenet_thin",  # A model option for being cool
        weights='yolov5s.pt',  # model.pt path(s)
        source='data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        update=False,  # update all models
        project='runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):
    w, h = 432, 368
    e = TfPoseEstimator(get_graph_path(model), target_size=(w, h))
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = Path(project)
    #save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    breakCond = False
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Openpose getting keypoints and individual crops
        print("\n")
        myImg = im0s.copy()
        keypoints, humans = getKeyPoints(myImg, e, w, h)
        crops = [
            getCrop(point[0], myImg, 10, device, point[1] / 2)
            for point in keypoints
        ]

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        t2 = time_synchronized()

        # Need to adjust bboxes to full image
        if len(pred) > 0:
            breakCond = True

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Check if any overlap between keypoint and det (handheld weapon)
                for detection in det:
                    for crop in crops:
                        if bbox_iou(detection, crop) > 0:
                            cv2.putText(im0, "Spider-Sense Tingling!",
                                        (30, 90), cv2.FONT_HERSHEY_SIMPLEX, 3,
                                        (255, 0, 0), 5)
                            break

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors(c, True),
                                     line_thickness=line_thickness)
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

                # write keypoint boxes
                for *xyxy, conf, cls in reversed(crops):
                    plot_one_box(xyxy,
                                 imc,
                                 label="keyP",
                                 color=colors(c, True),
                                 line_thickness=line_thickness)

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            im0 = TfPoseEstimator.draw_humans(im0, humans, imgcopy=False)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #23
0
def detect(save_img=False):
    source, weights, weights2, view_img, save_txt, imgsz, thres = opt.source, opt.weights, opt.weights2, opt.view_img, opt.save_txt, opt.img_size, opt.headThres
    save_img = not opt.nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = Path(opt.project)
    # save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load models
    model1 = attempt_load(weights, map_location=device)
    model2 = attempt_load(weights2, map_location=device)
    stride1 = int(model1.stride.max())  # model strides
    stride2 = int(model2.stride.max())  # model 2 strides
    names1 = model1.module.names if hasattr(model1, 'module') else model1.names
    names2 = model2.module.names if hasattr(model2, 'module') else model2.names
    imgsz = check_img_size(imgsz, s=stride1)  # check img_size
    if half:
        model1.half()  # to FP16
        model2.half()  # to FP16 too

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        if opt.saveWebcam:
            save_img = True
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride1)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride1)

    # Run inference
    numFrames = 1
    t0 = time.time()
    numWeapons = 0
    headDet = []
    weapDet = []
    frames = []
    mask = None
    for path, img, im0s, vid_cap in dataset:
        print("\nFrame:", numFrames)
        if webcam:
            print("FPS", dataset.fps)
        t1 = time_synchronized()

        # Adding to frame
        if (len(img.shape) >= 4):
            myImg = np.dstack((img[0, 0], img[0, 1], img[0, 2]))
        else:
            myImg = np.dstack((img[0], img[1], img[2]))

        # Creating mask
        if mask is None:
            mask = np.zeros_like(myImg)

        # Appending frames
        frames.append(myImg)
        if len(frames) > opt.filterLen:
            frames.pop(0)

        # Starting with the actual detections
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Do first round of predictions
        model = model1  # set pointer to model1
        names = names1

        # Inference
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   opt.classes,
                                   opt.agnostic_nms,
                                   max_det=opt.max_det)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            weapDet.append(det.clone())
            if len(weapDet) > opt.filterLen:
                weapDet.pop(0)
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i], dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if opt.save_crop else im0  # for opt.save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()
                # for detection in det[:, :4]:

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names2[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if opt.hide_labels else (
                            names[c]
                            if opt.hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors(c, True),
                                     line_thickness=opt.line_thickness)
                        if opt.save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=Path(save_path + '_crops') /
                                         names[c] / f'{p.stem}.jpg',
                                         BGR=True)

        print("2nd Round")
        model = model2
        names = names2

        # Inference
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   opt.classes,
                                   opt.agnostic_nms,
                                   max_det=opt.max_det)
        t2 = time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            numWeapons += len(det)
            headDet.append(det.clone())
            if len(headDet) > opt.filterLen:
                headDet.pop(0)
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i], dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if opt.save_crop else im0  # for opt.save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if opt.hide_labels else (
                            names[c]
                            if opt.hide_conf else f'{names[c]} {conf:.2f}')
                        width = round(
                            float((xyxy[2] - xyxy[0]) / im0.shape[1]), 2)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label + " " + str(width),
                                     color=colors(c, True),
                                     line_thickness=opt.line_thickness)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Checking for Spider-Sense
            sense = spider_sense(headDet, weapDet, frames, im0, thres, mask,
                                 device)
            if sense[0] or sense[1]:
                cv2.putText(im0, "Spider-Sense Tingling!", (30, 90),
                            cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 5)

            # Stream results
            if view_img:
                if opt.flowShow:
                    thisMask = cv2.resize(mask, (im0.shape[1], im0.shape[0]))
                    im0 = cv2.add(im0, thisMask)
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                elif webcam:
                    if vid_path != save_path + ".mp4":
                        vid_path = save_path + ".mp4"
                        print("Save Path: ", save_path)
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'
                        fps = dataset.fps
                        w = dataset.w
                        h = dataset.h
                        vid_writer = cv2.VideoWriter(
                            vid_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    if opt.flowShow:
                        thisMask = cv2.resize(mask,
                                              (im0.shape[1], im0.shape[0]))
                        im0 = cv2.add(im0, thisMask)
                    vid_writer.write(im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        print("Save Path: ", save_path)
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    if opt.flowShow:
                        thisMask = cv2.resize(mask,
                                              (im0.shape[1], im0.shape[0]))
                        im0 = cv2.add(im0, thisMask)
                    vid_writer.write(im0)

        # Checking break condition
        if numFrames == opt.maxFrames:
            break
        numFrames += 1

    if isinstance(vid_writer, cv2.VideoWriter):
        vid_writer.release()  # release previous video writer
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''