コード例 #1
0
def box_plots(df, metadata):
    """ displays boxplots for each column in the input dataframe 

        Args:
            df (pandas.DataFrame): input dataframe
    """

    scaler = MinMaxScaler()

    f, ax = plt.subplots(1, 1, figsize=(12, 8))
    k = 1
    names = []
    for i, col in enumerate(df.columns):
        if col != "num":
            names.append("  " + col)
            names.append("")
            c = df[col][(df[col] > 0) & (df['num'] == 1)].values.reshape(-1, 1)
            c = scaler.fit_transform(c)
            p1 = ax.boxplot(c[~np.isnan(c)],
                            showfliers=False,
                            positions=[k - .4],
                            patch_artist=True,
                            boxprops=dict(facecolor='red',
                                          color='red',
                                          alpha=.5),
                            whiskerprops=dict(color='red'),
                            medianprops=dict(color='black'),
                            widths=(.6))
            # ax.set_yticklabels("")

            c = df[col][(df[col] > 0) & (df['num'] == 0)].values.reshape(-1, 1)
            c = scaler.fit_transform(c)
            p2 = ax.boxplot(c[~np.isnan(c)],
                            showfliers=False,
                            positions=[k + .4],
                            patch_artist=True,
                            boxprops=dict(facecolor='green',
                                          color='green',
                                          alpha=.5),
                            whiskerprops=dict(color='green'),
                            medianprops=dict(color='black'),
                            widths=(.6))
            ticks = list(ax.get_xticks())
            ticks[-1] = np.nan
            ax.set_xticks(ticks)
            # ax.set_yticklabels(["", col])
            k += 3

    ax.set_xticklabels(names)
    ax.tick_params(width=0, length=0)
    plt.show(block=False)
コード例 #2
0
ファイル: viewraw.py プロジェクト: jacg/petalo
 def __init__(self, images, *, axis='x'):
     self.ts = set('z')
     self.fig, self.ax = plt.subplots()
     self.images = tuple(image(wrap_1d_into_3d(data, shape), shape, full_lengths)
                         for (shape, full_lengths), data in images)
     self.image_number = 0
     self.axis = axis
     shape = self.images[self.image_number].shape
     self.pos = [n // 2 for n in shape] # start off in the middle along each axis
     self.ax.imshow(self.slice_through_data())
     self.aximage = self.ax.images[0]
     self.fig.canvas.mpl_connect('key_press_event', self.process_key)
     self.update()
     plt.show()
コード例 #3
0
def plot_histograms(df):
    """ plots the histograms of the columns of the input dataframe

        Args:
            df(pandas.DataFrame): input data
    """
    cols = df.columns
    ncols = len(cols)
    if ncols % 15 == 0:
        nfigs = int(ncols / 15)
    else:
        nfigs = int(np.floor(ncols / 15) + 1)
        rem = int(ncols % 15)
    t = 0
    for n in range(nfigs):
        if n < nfigs:
            f, axes = plt.subplots(5, 3, figsize=(13, 10))
            f.suptitle("Histograms. Red = diseased, green = healthy",
                       fontsize=16)

            k = 0
            for j in range(3):
                for i in range(5):
                    c = cols[i + k + t - 1]
                    axes[i, j].hist(df[c][df["num"] == 0],
                                    bins=100,
                                    color="green",
                                    alpha=.5)
                    axes[i, j].hist(df[c][df["num"] == 1],
                                    bins=100,
                                    color="red",
                                    alpha=.5)
                    axes[i, j].set_xlabel(c)
                k = k + 5
        else:
            f, axes = plt.subplots(rem, 1, figsize=(6, 10))
            f.suptitle("Histograms. Red = diseased, green = healthy",
                       fontsize=16)
            for i in range(rem):
                c = cols[-rem:][i]
                axes[i].hist(df[c], bins=100)
                axes[i].set_xlabel(c)

        t = t + 10
        plt.subplots_adjust(hspace=.5, right=.95, left=.05)

    # plt.tight_layout()
    plt.show()
コード例 #4
0
def plot_mapping(curr_ds, curr_ref, ds_ind, ref_ind):
    tsne = TSNE(n_iter=400, verbose=VERBOSE, random_state=69)

    tsne.fit(curr_ds)
    plt.figure()
    coords_ds = tsne.embedding_[:, :]
    coords_ds[:, 1] += 100
    plt.scatter(coords_ds[:, 0], coords_ds[:, 1])

    tsne.fit(curr_ref)
    coords_ref = tsne.embedding_[:, :]
    plt.scatter(coords_ref[:, 0], coords_ref[:, 1])

    x_list, y_list = [], []
    for r_i, c_i in zip(ds_ind, ref_ind):
        x_list.append(coords_ds[r_i, 0])
        x_list.append(coords_ref[c_i, 0])
        x_list.append(None)
        y_list.append(coords_ds[r_i, 1])
        y_list.append(coords_ref[c_i, 1])
        y_list.append(None)
    plt.plot(x_list, y_list, 'b-', alpha=0.3)
    plt.show()
コード例 #5
0
def coverage_ratio(df, plot=False):
    """ calculates the coverage ratio for each column
        in the input dataframe 'df' 

        Args:
            df (pandas.DataFrame)
            plot (bool): if True displays a column plot of the coverage ratios

        Returns:
            dict: dictionary with column names as keys and coverage
                  ratios as values
    """

    cov = {}
    for i, col in enumerate(df.columns):
        cov[col] = sum(df[col].notna()) / len(df)

    if plot is True:
        f, ax = plt.subplots(figsize=(12, 6))
        ax.bar(cov.keys(), cov.values())
        plt.show(block=True)

    return cov
コード例 #6
0
# Prediction
ref_final, pre_final, prob_recontructed, ref_reconstructed, mask_no_considered_, mask_ts, time_ts = prediction(
    model, image_array, image_ref, final_mask, mask_ts_, patch_size, area)

# Metrics
cm = confusion_matrix(ref_final, pre_final)
metrics = compute_metrics(ref_final, pre_final)
print('Confusion  matrix \n', cm)
print('Accuracy: ', metrics[0])
print('F1score: ', metrics[1])
print('Recall: ', metrics[2])
print('Precision: ', metrics[3])

# Alarm area
total = (cm[1, 1] + cm[0, 1]) / len(ref_final) * 100
print('Area to be analyzed', total)

print('training time', end_training)
print('test time', time_ts)

#%% Show the results
# prediction of the whole image
fig1 = plt.figure('whole prediction')
plt.imshow(prob_recontructed)
plt.imsave('whole_pred.jpg', prob_recontructed)
# Show the test tiles
fig2 = plt.figure('prediction of test set')
plt.imshow(prob_recontructed * mask_ts)
plt.imsave('pred_test_set.jpg', prob_recontructed * mask_ts)
plt.show()
コード例 #7
0
warnings.filterwarnings('ignore')

# Define the input to be tested
test_idx = 89
xi = test_x[[test_idx]]
yi = test_y[test_idx]

# Create a DeepExplain context.
# IMPORTANT: the network must be created within this context.
# In this example we have trained the network before, so we call `model(X)` to
# recreate the network graph using the same weights that have been already trained.
with DeepExplain(session=sess) as de:
    logits = model(X)
    # We run `explain()` several time to compare different attribution methods
    attributions = {'Epsilon-LRP': de.explain('elrp', logits * yi, X, xi)}
    print('Done')

# Plot attributions
n_cols = len(attributions) + 1
fig, axes = plt.subplots(nrows=1, ncols=n_cols, figsize=(3 * n_cols, 3))
plot(xi.reshape(28, 28), cmap='Greys', axis=axes[0]).set_title('Original')
print(yi)
for i in range(len(yi)):
    if yi[i] == float(1):
        print("test output : ", i)
for i, method_name in enumerate(sorted(attributions.keys())):
    plt.show(
        plot(attributions[method_name].reshape(28, 28),
             xi=xi.reshape(28, 28),
             axis=axes[1 + i]).set_title(method_name))