def set_configuration(self): # Check training variables with tf.name_scope("train_var"): all_vars = tf.trainable_variables() enc_var = [v for v in all_vars if 'Encoder' in v.op.name or 'encoder' in v.op.name] print(cyan('================== ENCODER ===================')) slim.model_analyzer.analyze_vars(enc_var, print_info=True) d_var = [v for v in all_vars if 'Depth' in v.op.name or 'depth' in v.op.name] print(cyan('================ DEPTH branch ================')) slim.model_analyzer.analyze_vars(d_var, print_info=True) p_var = [v for v in all_vars if 'Pixel' in v.op.name or 'pixel' in v.op.name] print(cyan('================ PIXEL branch ================')) slim.model_analyzer.analyze_vars(p_var, print_info=True) m_var = [v for v in all_vars if 'Mask' in v.op.name or 'mask' in v.op.name] print(cyan('================ MASK branch =================')) slim.model_analyzer.analyze_vars(m_var, print_info=True) self.train_summary_op = tf.summary.merge_all(key='train') # Set up the saver self.saver = tf.train.Saver(max_to_keep=100) self.pretrain_saver = tf.train.Saver(var_list=all_vars, max_to_keep=1) self.pretrain_saver_enc = tf.train.Saver(var_list=enc_var, max_to_keep=1) self.pretrain_saver_d = tf.train.Saver(var_list=d_var, max_to_keep=1) self.pretrain_saver_p = tf.train.Saver(var_list=p_var, max_to_keep=1) self.pretrain_saver_m = tf.train.Saver(var_list=m_var, max_to_keep=1) # Set up training session with tf.name_scope('train_session_config'): self.summary_writer = tf.summary.FileWriter(self.checkpoint_dir) self.supervisor = tf.train.Supervisor(logdir=self.checkpoint_dir, is_chief=True, saver=None, summary_op=None, summary_writer=self.summary_writer, save_summaries_secs=300, save_model_secs=600, global_step=self.global_step) session_config = tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True), device_count={'GPU':1}) self.session = self.supervisor.prepare_or_wait_for_session(config=session_config) # Reload the checkpoint if exist with tf.name_scope('train_checkpoint'): if self.continue_train: if self.checkpoint_dir is not None: # checkpoint = tf.train.latest_checkpoint(checkpoint_dir) print(yellow('Restoring latest checkpoint path: {}'.format(self.checkpoint_dir))) self.pretrain_saver.restore(self.session, self.checkpoint_dir)
def put_images_pairs_in_folder(pair_list, dest_folder, set_count): list_num_total = len(pair_list) for i, pair in enumerate(pair_list): temp_folder = os.path.join(dest_folder, 'set_ori{}'.format(i + set_count)) if not os.path.exists(temp_folder): os.makedirs(temp_folder) print('Moving {}th pair out of {} pairs'.format(i, list_num_total)) try: move(pair[0][0], temp_folder) # D5 jpg move(pair[0][1], temp_folder) # D5 cv2 move(pair[1][0], temp_folder) # p20 jpg move(pair[1][1], temp_folder) # p20 dng move_folders(pair[2], temp_folder) # zed folders except: print(yellow('File does not exists ')) pass print(magenta('Finishing moving images in pairs'))
print( red('[Error] Select at least one device to run: --p20 / --zed / --d5' )) exit(-1) print(cyan('============== Selected Devices ================')) print(cyan('{}'.format(processes))) print(cyan('==================== Guide =====================')) print(cyan('Mouse LEFT click to record videos.')) print(cyan('Mouse RIGHT click to exit the program.')) make_dir_if_not_exists(__ZED_IMG_PATH__) make_dir_if_not_exists(__P20_IMG_PATH__) make_dir_if_not_exists(__D5_IMG_PATH__) # Create logger img_logger = logutils.create_logger(__VID_LOGGING_FILE__) # Kill the process which blocks the camera connection canon.killGphoto2Process() print( yellow('Make sure that all the devices are on and at the right mode!')) # Collect events until released with Listener(on_click=on_click_run) as listener: listener.join() # Alarm that this program is closed. beep(3) print('Done!')
import os import cv2 from utils.print_utils import yellow, red __BASE_DIR__ = '/media/dc2019/My Book/VID/VQM_data' __TEST_DIR__ = os.path.join(__BASE_DIR__, 'zed/test') __VALID_DIR__ = os.path.join(__BASE_DIR__, 'zed/validation') sets = os.listdir(__TEST_DIR__) for set in sets: set_dir = os.path.join(__TEST_DIR__, set) print(yellow(set_dir)) frames = os.listdir(set_dir) for frame in frames: print(os.path.join(set_dir, frame)) try: img = cv2.imread(os.path.join(set_dir, frame)) except: print(red(os.path.join(set_dir, frame))) print('Done!')
def print_helpping_messages(self): print(yellow('n: go to next folder \ p: go to previous folder')) print(yellow('s: move items into a saving folder')) print(yellow('h: move items into a hold folder')) print(yellow('d: move items into a deleting folder'))