def expand_resize_data(prediction=None, submission_size=(3384, 1710), offset=690): pred_mask = decode_labels(prediction) expand_mask = cv2.resize(pred_mask, (submission_size[0], submission_size[1] - offset), interpolation=cv2.INTER_NEAREST) submission_mask = np.zeros((submission_size[1], submission_size[0]), dtype='uint8') submission_mask[offset:, :] = expand_mask return submission_mask
TA_sum=[] for i,j in result["TP"].items(): TP_sum.append(j) for i,j in result["TA"].items(): TA_sum.append(j) TP_sum=np.array(TP_sum) TA_sum=np.array(TA_sum) TP_sum=TP_sum[1:].sum() TA_sum=TA_sum[1:].sum() acc='%.5f' %(TP_sum/TA_sum) print("acc:",acc) acc_all.append(acc) pred = pred.detach().cpu().numpy() mask = np.squeeze(mask.detach().cpu().numpy()) for k in range(batch_size): pred_=pred[k,:] pred_ = decode_labels(np.squeeze(pred_)) mask_=mask[k,:] mp.imsave('./predict/pred/' + str(j*batch_size+k) + '.png', pred_) mp.imsave('./predict/label/' + str(j*batch_size+k) + '.png', mask_) j=j+1 print("test_miou_Avr:", np.mean(test_all_miou)) acc_all = np.array(acc_all, dtype=np.float32) print("acc_Avr:", np.mean(acc_all))
TA_sum.append(j) TP_sum = np.array(TP_sum) TA_sum = np.array(TA_sum) TP_sum = TP_sum[1:].sum() TA_sum = TA_sum[1:].sum() acc = '%.5f' % (TP_sum / TA_sum) print("acc:", acc) acc_all.append(acc) pred = pred.detach().cpu().numpy() mask = mask.detach().cpu().numpy() # print("pred.shape:",pred.shape) # print("mask.shape:",mask.shape) for k in range(batch_size): pred_ = pred[k, :] pred_ = decode_labels(pred_) mask_ = mask[k, :] # print("pred_.shape:",pred_.shape) # print("mask_.shape:",mask_.shape) mp.imsave('./predict/pred/' + str(j * batch_size + k) + '.png', pred_) mp.imsave( './predict/label/' + str(j * batch_size + k) + '.png', mask_) j = j + 1 print("test_miou_Avr:", np.mean(test_all_miou)) acc_all = np.array(acc_all, dtype=np.float32) print("acc_Avr:", np.mean(acc_all))