コード例 #1
0
def load_pretrained_cifar_resnet(flavor=32, use_gpu=False,
                                 return_normalizer=False):
    """ Helper fxn to initialize/load the pretrained cifar resnet
    """

    # Resolve load path
    valid_flavor_numbers = [110, 1202, 20, 32, 44, 56]
    assert flavor in valid_flavor_numbers
    weight_path = os.path.join(RESNET_WEIGHT_PATH,
                               'cifar10_resnet%s.th' % flavor)


    # Resolve CPU/GPU stuff
    if use_gpu:
        map_location = None
    else:
        map_location = (lambda s, l: s)


    # need to modify the resnet state dict to be proper
    # TODO: LOAD THESE INTO MODEL ZOO
    bad_state_dict = torch.load(weight_path, map_location=map_location)
    correct_state_dict = {re.sub(r'^module\.', '', k): v for k, v in
                          bad_state_dict['state_dict'].items()}


    classifier_net = eval("cifar_resnets.resnet%s" % flavor)()
    classifier_net.load_state_dict(correct_state_dict)

    if return_normalizer:
        normalizer = utils.DifferentiableNormalize(mean=CIFAR10_MEANS,
                                                   std=CIFAR10_STDS)
        return classifier_net, normalizer

    return classifier_net
コード例 #2
0
ファイル: mnist_loader.py プロジェクト: tianweiy/mister_ed
def load_pretrained_mnist_cnn(return_normalizer=False, manual_gpu=None):
    """ Helper fxn to initialize/load the pretrained mnist cnn
    """

    # Resolve load path
    weight_path = os.path.join(MNIST_WEIGHT_PATH, 'mnist.th')

    # Resolve CPU/GPU stuff
    if manual_gpu is not None:
        use_gpu = manual_gpu
    else:
        use_gpu = utils.use_gpu()

    if use_gpu:
        map_location = None
    else:
        map_location = (lambda s, l: s)

    state_dict = torch.load(weight_path)
    classifier_net = mnist_cnn.Net()

    classifier_net.load_state_dict(state_dict)

    if return_normalizer:
        normalizer = utils.DifferentiableNormalize(mean=MNIST_MEANS,
                                                   std=MNIST_STDS)
        return classifier_net, normalizer

    return classifier_net
def main_defense_script():

    ########################################################################
    #   SHARED BLOCK                                                       #
    ########################################################################

    # Initialize CIFAR classifier
    classifier_net = cifar_loader.load_pretrained_cifar_resnet(flavor=32,
                                                               use_gpu=False)
    classifier_net.eval()

    # Differentiable normalizer needed for classification
    cifar_normer = utils.DifferentiableNormalize(mean=config.CIFAR10_MEANS,
                                                 std=config.CIFAR10_STDS)

    ######################################################################
    #                     SIMPLE FGSM TRAINING EXAMPLE                   #
    ######################################################################
    if True:
        # Steps
        # 0) initialize hyperparams for attack/training
        # 1) setup attack loss object
        # 2) build attack and parameters for attack
        # 3) build training object, training loss, data loader
        # 4) train

        # 0
        FGSM_L_INF = 8.0 / 255.0
        FGSM_TRAINING_ATTACK_PROPORTION = 0.5
        FGSM_TRAINING_EPOCHS = 10

        # 1
        fgsm_attack_loss = plf.VanillaXentropy(classifier_net, cifar_normer)

        # 2
        fgsm_xentropy_attack_obj = aa.FGSM(classifier_net, cifar_normer,
                                           fgsm_attack_loss)
        fgsm_xentropy_attack_params = advtrain.AdversarialAttackParameters(
            fgsm_xentropy_attack_obj, FGSM_TRAINING_ATTACK_PROPORTION,
            {'attack_kwargs': {
                'l_inf_bound': FGSM_L_INF
            }})

        # 3
        half_fgsm_cifar = advtrain.AdversarialTraining(classifier_net,
                                                       cifar_normer,
                                                       'half_fgsm_cifar',
                                                       'cifar_resnet32')
        train_loss = nn.CrossEntropyLoss()
        train_loader = cifar_loader.load_cifar_data('train', normalize=False)

        # 4
        half_fgsm_cifar.train(train_loader,
                              FGSM_TRAINING_EPOCHS,
                              train_loss,
                              attack_parameters=fgsm_xentropy_attack_params,
                              verbosity='snoop')
def main_evaluation_script():
    """ Here's a little script to show how to evaluate a trained model
        against varying attacks (on the fly, without saving adv examples)
    """

    # Steps
    # 0) Initialize a classifier/normalizer/evaluation loader
    # 1) Build some attack objects to try
    # 2) Run the evaluation and print results

    # 0
    classifier_net = cifar_loader.load_pretrained_cifar_resnet(flavor=32,
                                                               use_gpu=False)
    cifar_normer = utils.DifferentiableNormalize(mean=config.CIFAR10_MEANS,
                                                 std=config.CIFAR10_STDS)
    val_loader = cifar_loader.load_cifar_data('val', normalize=False)

    # 1
    L_INF_BOUND = 8.0 / 255.0
    # --- FGSM attack
    fgsm_xentropy_loss = plf.VanillaXentropy(classifier_net,
                                             normalizer=cifar_normer)

    fgsm_attack_obj = aa.FGSM(classifier_net, cifar_normer, fgsm_xentropy_loss)
    fgsm_spec_params = {'attack_kwargs': {'l_inf_bound': L_INF_BOUND}}
    fgsm_attack_params = advtrain.AdversarialAttackParameters(
        fgsm_attack_obj, 0.5, fgsm_spec_params)

    # --- BIM attack
    BIM_L_INF = 8.0 / 255.0

    BIM_STEP_SIZE = 1.0 / 255.0
    BIM_NUM_ITER = 16

    bim_xentropy_loss = plf.VanillaXentropy(classifier_net,
                                            normalizer=cifar_normer)

    bim_attack_obj = aa.BIM(classifier_net, cifar_normer, bim_xentropy_loss)
    bim_spec_params = {
        'attack_kwargs': {
            'l_inf_bound': L_INF_BOUND,
            'step_size': BIM_STEP_SIZE,
            'num_iterations': BIM_NUM_ITER
        }
    }
    bim_attack_params = advtrain.AdversarialAttackParameters(
        bim_attack_obj, 0.5, bim_spec_params)

    attack_ensemble = {'fgsm': fgsm_attack_params, 'bim': bim_attack_params}

    # 2
    eval_obj = advtrain.AdversarialEvaluation(classifier_net, cifar_normer)
    eval_out = eval_obj.evaluate(val_loader,
                                 attack_ensemble,
                                 num_minibatches=5)
コード例 #5
0
def load_pretrained_cifar_wide_resnet(use_gpu=False, return_normalizer=False):
    """ Helper fxn to initialize/load a pretrained 28x10 CIFAR resnet """

    weight_path = os.path.join(RESNET_WEIGHT_PATH,
                               'cifar10_wide-resnet28x10.th')
    state_dict = torch.load(weight_path)
    classifier_net = wide_resnets.Wide_ResNet(28, 10, 0, 10)

    classifier_net.load_state_dict(state_dict)

    if return_normalizer:
        normalizer = utils.DifferentiableNormalize(mean=WIDE_CIFAR10_MEANS,
                                                   std=WIDE_CIFAR10_STDS)
        return classifier_net, normalizer

    return classifier_net
コード例 #6
0
def normalizer_from_imagenet_model(model):
    """ Imagenet models taken from the git repo are not normalized and have
        different normalization means/stds. This builds a
        DifferentiableNormalizer object
    ARGS:
        model : output of load_pretrained_imagenet
    """
    if hasattr(model, 'mean'):
        mean = model.mean
    else:
        mean = DEFAULT_MEANS

    if hasattr(model, 'std'):
        std = model.std
    else:
        std = DEFAULT_STDS

    return utils.DifferentiableNormalize(mean, std)
コード例 #7
0
import cifar10.cifar_loader as cifar_loader
import cifar10.cifar_resnets as cifar_resnets
import adversarial_attacks as aa
import adversarial_training as advtrain
import adversarial_evaluation as adveval
import checkpoints

# In[3]:

# Block 0: load dataset, normalizer, adversarially trained net
val_loader = cifar_loader.load_cifar_data('val',
                                          normalize=False,
                                          batch_size=8,
                                          use_gpu=True)

cifar_normer = utils.DifferentiableNormalize(mean=config.CIFAR10_MEANS,
                                             std=config.CIFAR10_STDS)

base_model = cifar_resnets.resnet32()
adv_trained_net = checkpoints.load_state_dict_from_filename(
    'half_trained_madry.th', base_model)

# In[4]:

# Block 1: build attack parameters
ATTACK_KWARGS = {
    'l_inf_bound': 8.0 / 255.0,
    'step_size': 0.5 / 255.0,
    'num_iterations': 20,
    'random_init': True,
    'signed': True,
    'verbose': False
コード例 #8
0
ファイル: main_sandbox.py プロジェクト: tongwu2020/mister_ed
def main_attack_script(attack_examples=None, show_images=False):

    # Which attacks to do...
    attack_examples = attack_examples or [
        'FGSM', 'BIM', 'PGD', 'CW2', 'CWLInf'
    ]

    ########################################################################
    #   SHARED BLOCK                                                       #
    ########################################################################

    # Initialize CIFAR classifier
    classifier_net = cifar_loader.load_pretrained_cifar_resnet(flavor=32)
    classifier_net.eval()

    # Collect one minibatch worth of data/targets
    val_loader = cifar_loader.load_cifar_data('val',
                                              normalize=False,
                                              batch_size=16)
    ex_minibatch, ex_targets = next(iter(val_loader))

    # Differentiable normalizer needed for classification
    cifar_normer = utils.DifferentiableNormalize(mean=config.CIFAR10_MEANS,
                                                 std=config.CIFAR10_STDS)

    #########################################################################
    #   FGSM ATTACK BLOCK                                                   #
    #########################################################################
    if 'FGSM' in attack_examples:
        # Example FGSM attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack (accuracy + display a few images )

        FGSM_L_INF = 8.0 / 255.0

        delta_threat = ap.ThreatModel(ap.DeltaAddition, {
            'lp_style': 'inf',
            'lp_bound': 8.0 / 255
        })

        fgsm_xentropy_loss = plf.VanillaXentropy(classifier_net,
                                                 normalizer=cifar_normer)

        fgsm_attack_obj = aa.FGSM(classifier_net, cifar_normer, delta_threat,
                                  fgsm_xentropy_loss)

        fgsm_original_images = ex_minibatch
        fgsm_original_labels = ex_targets

        fgsm_adv_images = fgsm_attack_obj.attack(
            fgsm_original_images, fgsm_original_labels,
            FGSM_L_INF).adversarial_tensors()

        fgsm_accuracy = fgsm_attack_obj.eval(fgsm_original_images,
                                             fgsm_adv_images,
                                             fgsm_original_labels)
        print("FGSM ATTACK ACCURACY: ")
        print("\t Original %% correct:    %s" % fgsm_accuracy[0])
        print("\t Adversarial %% correct: %s" % fgsm_accuracy[1])

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               fgsm_original_images,
                                               fgsm_adv_images, 4)

    ##########################################################################
    #   BIM ATTACK BLOCK                                                     #
    ##########################################################################

    if 'BIM' in attack_examples:
        # Example BIM attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack

        BIM_L_INF = 8.0 / 255.0
        BIM_STEP_SIZE = 1.0 / 255.0
        BIM_NUM_ITER = 16

        bim_xentropy_loss = plf.VanillaXentropy(classifier_net,
                                                normalizer=cifar_normer)

        bim_attack_obj = aa.BIM(classifier_net, cifar_normer,
                                bim_xentropy_loss)

        bim_original_images = ex_minibatch
        bim_original_labels = ex_targets

        bim_adv_images = bim_attack_obj.attack(bim_original_images,
                                               bim_original_labels,
                                               l_inf_bound=BIM_L_INF,
                                               step_size=BIM_STEP_SIZE,
                                               num_iterations=BIM_NUM_ITER)

        bim_accuracy = bim_attack_obj.eval(bim_original_images, bim_adv_images,
                                           bim_original_labels)
        print("BIM ATTACK ACCURACY: ")
        print("\t Original %% correct:    %s" % bim_accuracy[0])
        print("\t Adversarial %% correct: %s" % bim_accuracy[1])

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               bim_original_images,
                                               bim_adv_images, 4)

    ##########################################################################
    #   PGD ATTACK BLOCK                                                     #
    ##########################################################################

    if 'PGD' in attack_examples:
        # Example BIM attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack

        PGD_L_INF = 8.0 / 255.0
        PGD_STEP_SIZE = 1.0 / 255.0
        PGD_NUM_ITER = 16

        pgd_xentropy_loss = plf.VanillaXentropy(classifier_net,
                                                normalizer=cifar_normer)

        delta_threat = ap.ThreatModel(ap.DeltaAddition, {
            'lp_style': 'inf',
            'lp_bound': 8.0 / 255
        })

        pgd_attack_obj = aa.PGD(classifier_net, cifar_normer, delta_threat,
                                pgd_xentropy_loss)

        pgd_original_images = ex_minibatch
        pgd_original_labels = ex_targets

        pgd_adv_images = pgd_attack_obj.attack(
            pgd_original_images,
            pgd_original_labels,
            step_size=PGD_STEP_SIZE,
            num_iterations=PGD_NUM_ITER).adversarial_tensors()

        pgd_accuracy = pgd_attack_obj.eval(pgd_original_images, pgd_adv_images,
                                           pgd_original_labels)
        print("PGD ATTACK ACCURACY: ")
        print("\t Original %% correct:    %s" % pgd_accuracy[0])
        print("\t Adversarial %% correct: %s" % pgd_accuracy[1])

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               pgd_original_images,
                                               pgd_adv_images, 4)

    ##########################################################################
    #   CW L2 ATTACK                                                         #
    ##########################################################################

    if 'CWL2' in attack_examples:

        # Example Carlini Wagner L2 attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack

        CW_INITIAL_SCALE_CONSTANT = 0.1
        CW_NUM_BIN_SEARCH_STEPS = 5
        CW_NUM_OPTIM_STEPS = 1000
        CW_DISTANCE_METRIC = 'l2'
        CW_CONFIDENCE = 0.0

        cw_f6loss = lf.CWLossF6
        delta_threat = ap.ThreatModel(ap.DeltaAddition, {
            'lp_style': 2,
            'lp_bound': 3072.0
        })
        cwl2_obj = aa.CarliniWagner(classifier_net, cifar_normer, delta_threat,
                                    lf.L2Regularization, cw_f6loss)

        cwl2_original_images = ex_minibatch
        cwl2_original_labels = ex_targets

        cwl2_output = cwl2_obj.attack(
            ex_minibatch,
            ex_targets,
            num_bin_search_steps=CW_NUM_BIN_SEARCH_STEPS,
            num_optim_steps=CW_NUM_OPTIM_STEPS,
            verbose=True)

        print(cwl2_output['best_dist'])
        cwl2_adv_images = cwl2_output['best_adv_images']

        cwl2_accuracy = cwl2_obj.eval(cwl2_original_images, cwl2_adv_images,
                                      cwl2_original_labels)
        print("CWL2 ATTACK ACCURACY: ")
        print("\t Original %% correct:    %s" % cwl2_accuracy[0])
        print("\t Adversarial %% correct: %s" % cwl2_accuracy[1])

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               cwl2_original_images,
                                               cwl2_adv_images, 4)
def main_attack_script(attack_examples=None, show_images=False, use_gpu=False):

    # Which attacks to do...
    attack_examples = attack_examples or [
        'FGSM', 'BIM', 'PGD', 'CW2', 'CWLInf'
    ]

    ########################################################################
    #   SHARED BLOCK                                                       #
    ########################################################################

    # Initialize CIFAR classifier
    classifier_net = cifar_loader.load_pretrained_cifar_resnet(flavor=32,
                                                               use_gpu=use_gpu)
    classifier_net.eval()

    # Collect one minibatch worth of data/targets
    val_loader = cifar_loader.load_cifar_data('val',
                                              normalize=False,
                                              batch_size=16,
                                              use_gpu=use_gpu)
    ex_minibatch, ex_targets = next(iter(val_loader))

    # Differentiable normalizer needed for classification
    cifar_normer = utils.DifferentiableNormalize(mean=config.CIFAR10_MEANS,
                                                 std=config.CIFAR10_STDS)

    #########################################################################
    #   FGSM ATTACK BLOCK                                                   #
    #########################################################################
    if 'FGSM' in attack_examples:
        # Example FGSM attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack (accuracy + display a few images )

        FGSM_L_INF = 8.0 / 255.0

        fgsm_xentropy_loss = plf.VanillaXentropy(classifier_net,
                                                 normalizer=cifar_normer)

        fgsm_attack_obj = aa.FGSM(classifier_net, cifar_normer,
                                  fgsm_xentropy_loss)

        fgsm_original_images = ex_minibatch
        fgsm_original_labels = ex_targets

        fgsm_adv_images = fgsm_attack_obj.attack(fgsm_original_images,
                                                 fgsm_original_labels,
                                                 FGSM_L_INF)

        fgsm_accuracy = fgsm_attack_obj.eval(fgsm_original_images,
                                             fgsm_adv_images,
                                             fgsm_original_labels)
        print "FGSM ATTACK ACCURACY: "
        print "\t Original %% correct:    %s" % fgsm_accuracy[0]
        print "\t Adversarial %% correct: %s" % fgsm_accuracy[1]

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               fgsm_original_images,
                                               fgsm_adv_images, 4)

    ##########################################################################
    #   BIM ATTACK BLOCK                                                     #
    ##########################################################################

    if 'BIM' in attack_examples:
        # Example BIM attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack

        BIM_L_INF = 8.0 / 255.0
        BIM_STEP_SIZE = 1.0 / 255.0
        BIM_NUM_ITER = 16

        bim_xentropy_loss = plf.VanillaXentropy(classifier_net,
                                                normalizer=cifar_normer)

        bim_attack_obj = aa.BIM(classifier_net, cifar_normer,
                                bim_xentropy_loss)

        bim_original_images = ex_minibatch
        bim_original_labels = ex_targets

        bim_adv_images = bim_attack_obj.attack(bim_original_images,
                                               bim_original_labels,
                                               l_inf_bound=BIM_L_INF,
                                               step_size=BIM_STEP_SIZE,
                                               num_iterations=BIM_NUM_ITER)

        bim_accuracy = bim_attack_obj.eval(bim_original_images, bim_adv_images,
                                           bim_original_labels)
        print "BIM ATTACK ACCURACY: "
        print "\t Original %% correct:    %s" % bim_accuracy[0]
        print "\t Adversarial %% correct: %s" % bim_accuracy[1]

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               bim_original_images,
                                               bim_adv_images, 4)

    ##########################################################################
    #   PGD ATTACK BLOCK                                                     #
    ##########################################################################

    if 'PGD' in attack_examples:
        # Example BIM attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack

        PGD_L_INF = 8.0 / 255.0
        PGD_STEP_SIZE = 1.0 / 255.0
        PGD_NUM_ITER = 16

        pgd_xentropy_loss = plf.VanillaXentropy(classifier_net,
                                                normalizer=cifar_normer)

        pgd_attack_obj = aa.LInfPGD(classifier_net, cifar_normer,
                                    pgd_xentropy_loss)

        pgd_original_images = ex_minibatch
        pgd_original_labels = ex_targets

        pgd_adv_images = pgd_attack_obj.attack(pgd_original_images,
                                               pgd_original_labels,
                                               l_inf_bound=PGD_L_INF,
                                               step_size=PGD_STEP_SIZE,
                                               num_iterations=PGD_NUM_ITER)

        pgd_accuracy = pgd_attack_obj.eval(pgd_original_images, pgd_adv_images,
                                           pgd_original_labels)
        print "PGD ATTACK ACCURACY: "
        print "\t Original %% correct:    %s" % pgd_accuracy[0]
        print "\t Adversarial %% correct: %s" % pgd_accuracy[1]

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               pgd_original_images,
                                               pgd_adv_images, 4)

    ##########################################################################
    #   CW L2 ATTACK                                                         #
    ##########################################################################

    if 'CWL2' in attack_examples:

        # Example Carlini Wagner L2 attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack

        CW_INITIAL_SCALE_CONSTANT = 0.1
        CW_NUM_BIN_SEARCH_STEPS = 5
        CW_NUM_OPTIM_STEPS = 1000
        CW_DISTANCE_METRIC = 'l2'
        CW_CONFIDENCE = 0.0

        cwl2_loss = plf.CWL2Loss(classifier_net, cifar_normer, kappa=0.0)
        cwl2_obj = aa.CW(classifier_net,
                         cifar_normer,
                         cwl2_loss,
                         CW_INITIAL_SCALE_CONSTANT,
                         num_bin_search_steps=CW_NUM_BIN_SEARCH_STEPS,
                         num_optim_steps=CW_NUM_OPTIM_STEPS,
                         distance_metric_type=CW_DISTANCE_METRIC,
                         confidence=CW_CONFIDENCE)

        cwl2_original_images = ex_minibatch
        cwl2_original_labels = ex_targets

        cwl2_output = cwl2_obj.attack(ex_minibatch, ex_targets, verbose=True)

        print cwl2_output['best_dist']
        cwl2_adv_images = cwl2_output['best_adv_images']

        cwl2_accuracy = cwl2_obj.eval(cwl2_original_images, cwl2_adv_images,
                                      cwl2_original_labels)
        print "CWL2 ATTACK ACCURACY: "
        print "\t Original %% correct:    %s" % cwl2_accuracy[0]
        print "\t Adversarial %% correct: %s" % cwl2_accuracy[1]

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               cwl2_original_images,
                                               cwl2_adv_images, 4)

    ##########################################################################
    #   CW LINF ATTACK                                                       #
    ##########################################################################

    if 'CWLInf' in attack_examples:

        # Example Carlini Wagner L2 attack on a single minibatch
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack

        CW_INITIAL_SCALE_CONSTANT = 0.1
        CW_NUM_BIN_SEARCH_STEPS = 5
        CW_NUM_OPTIM_STEPS = 1000
        CW_DISTANCE_METRIC = 'linf'
        CW_CONFIDENCE = 0.0

        cwlinf_loss = plf.CWLInfLoss(classifier_net, cifar_normer, kappa=0.0)
        cwlinf_obj = aa.CW(classifier_net,
                           cifar_normer,
                           cwlinf_loss,
                           CW_INITIAL_SCALE_CONSTANT,
                           num_bin_search_steps=CW_NUM_BIN_SEARCH_STEPS,
                           num_optim_steps=CW_NUM_OPTIM_STEPS,
                           distance_metric_type=CW_DISTANCE_METRIC,
                           confidence=CW_CONFIDENCE)

        cwlinf_original_images = ex_minibatch
        cwlinf_original_labels = ex_targets

        cwlinf_output = cwlinf_obj.attack(ex_minibatch,
                                          ex_targets,
                                          verbose=True)

        print cwlinf_output['best_dist'] * 255.0
        cwlinf_adv_images = cwlinf_output['best_adv_images']

        cwlinf_accuracy = cwlinf_obj.eval(cwlinf_original_images,
                                          cwlinf_adv_images,
                                          cwlinf_original_labels)
        print "CWLinf ATTACK ACCURACY: "
        print "\t Original %% correct:    %s" % cwlinf_accuracy[0]
        print "\t Adversarial %% correct: %s" % cwlinf_accuracy[1]

        if show_images:
            img_utils.display_adversarial_2row(classifier_net, cifar_normer,
                                               cwlinf_original_images,
                                               cwlinf_adv_images, 4)

    ##########################################################################
    #   URM ATTACK                                                           #
    ##########################################################################

    if 'URM' in attack_examples:

        # Example Uniform Random Method
        # steps:
        #   0) initialize hyperparams
        #   1) setup loss object
        #   2) build attack object
        #   3) setup examples to attack
        #   4) perform attack
        #   5) evaluate attack

        URM_BOUND = 8.0 / 255.0
        URM_TRIES = 100

        urm_loss = lf.IncorrectIndicator(classifier_net,
                                         normalizer=cifar_normer)

        urm_attack = aa.URM(classifier_net,
                            cifar_normer,
                            urm_loss,
                            use_gpu=use_gpu)

        urm_original_images = ex_minibatch
        urm_original_labels = ex_targets

        urm_output = urm_attack.attack(ex_minibatch,
                                       ex_targets,
                                       URM_BOUND,
                                       num_tries=URM_TRIES)

        import interact