コード例 #1
0
def rejection_sampling_z(N, y, W1, W2):
    """A rejection sampling method for sampling the from a polytope.

    Parameters
    ----------
    N : int
        the number of inactive variable samples
    y : ndarray
        the value of the active variables
    W1 : ndarray
        m-by-n matrix that contains the eigenvector bases of the n-dimensional
        active subspace
    W2 : ndarray
        m-by-(m-n) matrix that contains the eigenvector bases of the
        (m-n)-dimensional inactive subspace

    Returns
    -------
    Z : ndarray
        N-by-(m-n) matrix that contains values of the inactive variable that
        correspond to the given `y`

    See Also
    --------
    domains.sample_z

    Notes
    -----
    The interface for this implementation is written specifically for
    `domains.sample_z`.
    """
    m, n = W1.shape
    s = np.dot(W1, y).reshape((m, 1))

    # Build a box around z for uniform sampling
    qps = QPSolver()
    A = np.vstack((W2, -W2))
    b = np.vstack((-1 - s, -1 + s)).reshape((2 * m, 1))
    lbox, ubox = np.zeros((1, m - n)), np.zeros((1, m - n))
    for i in range(m - n):
        clb = np.zeros((m - n, 1))
        clb[i, 0] = 1.0
        lbox[0, i] = qps.linear_program_ineq(clb, A, b)[i, 0]
        cub = np.zeros((m - n, 1))
        cub[i, 0] = -1.0
        ubox[0, i] = qps.linear_program_ineq(cub, A, b)[i, 0]
    bn = BoundedNormalizer(lbox, ubox)
    Zbox = bn.unnormalize(np.random.uniform(-1.0, 1.0, size=(50 * N, m - n)))
    ind = np.all(np.dot(A, Zbox.T) >= b, axis=0)

    if np.sum(ind) >= N:
        Z = Zbox[ind, :]
        return Z[:N, :].reshape((N, m - n))
    else:
        return None
コード例 #2
0
    def regularize_z(self, Y, N=1):
        """Train the global quadratic for the regularization.

        Parameters
        ----------
        Y : ndarray
            N-by-n matrix of points in the space of active variables
        N : int, optional
            merely there satisfy the interface of `regularize_z`. It should not
            be anything other than 1

        Returns
        -------
        Z : ndarray
            N-by-(m-n)-by-1 matrix that contains a value of the inactive
            variables for each value of the inactive variables

        Notes
        -----
        In contrast to the `regularize_z` in BoundedActiveVariableMap and
        UnboundedActiveVariableMap, this implementation of `regularize_z` uses
        a quadratic program to find a single value of the inactive variables
        for each value of the active variables.
        """
        if N != 1:
            raise Exception('MinVariableMap needs N=1.')

        W1, W2 = self.domain.subspaces.W1, self.domain.subspaces.W2
        m, n = W1.shape
        NY = Y.shape[0]
        qps = QPSolver()

        Zlist = []
        A_ineq = np.vstack((W2, -W2))
        for y in Y:
            c = self._bz.reshape((m-n, 1)) + np.dot(self._zAy, y).reshape((m-n, 1))
            b_ineq = np.vstack((
                -1-np.dot(W1, y).reshape((m, 1)),
                -1+np.dot(W1, y).reshape((m, 1))
                ))
            z = qps.quadratic_program_ineq(c, self._zAz, A_ineq, b_ineq)
            Zlist.append(z)
        Z = np.array(Zlist).reshape((NY, m-n, N))
        return Z
コード例 #3
0
def random_walk_z(N, y, W1, W2):
    """A random walk method for sampling from a polytope.

    Parameters
    ----------
    N : int
        the number of inactive variable samples
    y : ndarray
        the value of the active variables
    W1 : ndarray
        m-by-n matrix that contains the eigenvector bases of the n-dimensional
        active subspace
    W2 : ndarray
        m-by-(m-n) matrix that contains the eigenvector bases of the
        (m-n)-dimensional inactive subspace

    Returns
    -------
    Z : ndarray
        N-by-(m-n) matrix that contains values of the inactive variable that
        correspond to the given `y`

    See Also
    --------
    domains.sample_z

    Notes
    -----
    The interface for this implementation is written specifically for
    `domains.sample_z`.
    """
    m, n = W1.shape
    s = np.dot(W1, y).reshape((m, 1))

    # linear program to get starting z0
    if np.all(np.zeros((m, 1)) <= 1 - s) and np.all(
            np.zeros((m, 1)) >= -1 - s):
        z0 = np.zeros((m - n, 1))
    else:
        qps = QPSolver()
        lb = -np.ones((m, 1))
        ub = np.ones((m, 1))
        c = np.zeros((m, 1))
        x0 = qps.linear_program_eq(c, W1.T, y.reshape((n, 1)), lb, ub)
        z0 = np.dot(W2.T, x0).reshape((m - n, 1))

    # get MCMC step size
    sig = 0.1 * np.minimum(np.linalg.norm(np.dot(W2, z0) + s - 1),
                           np.linalg.norm(np.dot(W2, z0) + s + 1))

    # burn in
    for i in range(10 * N):
        zc = z0 + sig * np.random.normal(size=z0.shape)
        if np.all(np.dot(W2, zc) <= 1 - s) and np.all(
                np.dot(W2, zc) >= -1 - s):
            z0 = zc

    # sample
    Z = np.zeros((m - n, N))
    for i in range(N):
        zc = z0 + sig * np.random.normal(size=z0.shape)
        if np.all(np.dot(W2, zc) <= 1 - s) and np.all(
                np.dot(W2, zc) >= -1 - s):
            z0 = zc
        Z[:, i] = z0.reshape((z0.shape[0], ))

    return Z.reshape((N, m - n))
コード例 #4
0
def hit_and_run_z(N, y, W1, W2):
    """A hit and run method for sampling the inactive variables from a polytope.

    Parameters
    ----------
    N : int
        the number of inactive variable samples
    y : ndarray
        the value of the active variables
    W1 : ndarray
        m-by-n matrix that contains the eigenvector bases of the n-dimensional
        active subspace
    W2 : ndarray
        m-by-(m-n) matrix that contains the eigenvector bases of the
        (m-n)-dimensional inactive subspace

    Returns
    -------
    Z : ndarray
        N-by-(m-n) matrix that contains values of the inactive variable that
        correspond to the given `y`

    See Also
    --------
    domains.sample_z

    Notes
    -----
    The interface for this implementation is written specifically for
    `domains.sample_z`.
    """
    m, n = W1.shape

    # get an initial feasible point using the Chebyshev center. huge props to
    # David Gleich for showing me the Chebyshev center.
    s = np.dot(W1, y).reshape((m, 1))
    normW2 = np.sqrt(np.sum(np.power(W2, 2), axis=1)).reshape((m, 1))
    A = np.hstack((np.vstack(
        (W2, -W2.copy())), np.vstack((normW2, normW2.copy()))))
    b = np.vstack((1 - s, 1 + s)).reshape((2 * m, 1))
    c = np.zeros((m - n + 1, 1))
    c[-1] = -1.0

    qps = QPSolver()
    zc = qps.linear_program_ineq(c, -A, -b)
    z0 = zc[:-1].reshape((m - n, 1))

    # define the polytope A >= b
    s = np.dot(W1, y).reshape((m, 1))
    A = np.vstack((W2, -W2))
    b = np.vstack((-1 - s, -1 + s)).reshape((2 * m, 1))

    # tolerance
    ztol = 1e-6
    eps0 = ztol / 4.0

    Z = np.zeros((N, m - n))
    for i in range(N):

        # random direction
        bad_dir = True
        count, maxcount = 0, 50
        while bad_dir:
            d = np.random.normal(size=(m - n, 1))
            bad_dir = np.any(np.dot(A, z0 + eps0 * d) <= b)
            count += 1
            if count >= maxcount:
                Z[i:, :] = np.tile(z0, (1, N - i)).transpose()
                return Z

        # find constraints that impose lower and upper bounds on eps
        f, g = b - np.dot(A, z0), np.dot(A, d)

        # find an upper bound on the step
        min_ind = np.logical_and(g <= 0, f < -np.sqrt(np.finfo(np.float).eps))
        eps_max = np.amin(f[min_ind] / g[min_ind])

        # find a lower bound on the step
        max_ind = np.logical_and(g > 0, f < -np.sqrt(np.finfo(np.float).eps))
        eps_min = np.amax(f[max_ind] / g[max_ind])

        # randomly sample eps
        eps1 = np.random.uniform(eps_min, eps_max)

        # take a step along d
        z1 = z0 + eps1 * d
        Z[i, :] = z1.reshape((m - n, ))

        # update temp var
        z0 = z1.copy()

    return Z