コード例 #1
0
def anchor_target_layer(image,rpn_cls_score, gt_boxes, im_info, _feat_stride=[16, ], anchor_scales=[16, ]):
    """
    Assign anchors to ground-truth targets. Produces anchor classification
    labels and bounding-box regression targets.
    Parameters
    ----------
    rpn_cls_score: (1, H, W, Ax2) bg/fg scores of previous conv layer
    gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class]
    im_info: a list of [image_height, image_width, scale_ratios]
    _feat_stride: the downsampling ratio of feature map to the original input image
    anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16])
    ----------
    Returns
    ----------
    rpn_labels : (HxWxA, 1), for each anchor, 0 denotes bg, 1 fg, -1 dontcare
    rpn_bbox_targets: (HxWxA, 4), distances of the anchors to the gt_boxes(may contains some transform)
                            that are the regression objectives
    rpn_bbox_inside_weights: (HxWxA, 4) weights of each boxes, mainly accepts hyper param in cfg
    rpn_bbox_outside_weights: (HxWxA, 4) used to balance the fg/bg,
                            beacuse the numbers of bgs and fgs mays significiantly different
    """
    try:
   
        for item in gt_boxes:
            color = (0,0,255)
            image1 = cv2.rectangle(image,(int(item[0]),int(item[1])),(int(item[2]),int(item[3])),color)
        cv2.imwrite('result_auchor.jpg',image1)
    except:
        print('warning!!!!!')


    _anchors = generate_anchors(scales=np.array(anchor_scales))  # 生成基本的anchor,一共9个
    _num_anchors = _anchors.shape[0]  # 9个anchor
    gt_boxes = np.array(gt_boxes)
    
    dontcareflag = gt_boxes[:,-1].reshape(-1)
    gt_boxes = gt_boxes[:,:-1]

    # allow boxes to sit over the edge by a small amount
    _allowed_border = 0

    im_info = im_info[0]  # 图像的高宽及通道数

    assert rpn_cls_score.shape[0] == 1, 'Only single item batches are supported'

    # map of shape (..., H, W)
    height, width = rpn_cls_score.shape[1:3]  # feature-map的高宽

    # 1. Generate proposals from bbox deltas and shifted anchors
    shift_x = np.arange(0, width) * _feat_stride
    shift_y = np.arange(0, height) * _feat_stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)  # in W H order
    # K is H x W
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),
                        shift_x.ravel(), shift_y.ravel())).transpose()  # 生成feature-map和真实image上anchor之间的偏移量
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = _num_anchors  # 9个anchor
    K = shifts.shape[0]  # 50*37,feature-map的宽乘高的大小
    all_anchors = (_anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)))  # 相当于复制宽高的维度,然后相加
    all_anchors = all_anchors.reshape((K * A, 4))
    total_anchors = int(K * A)

    # 仅保留那些还在图像内部的anchor,超出图像的都删掉
    inds_inside = np.where(
        (all_anchors[:, 0] >= -_allowed_border) &
        (all_anchors[:, 1] >= -_allowed_border) &
        (all_anchors[:, 2] < im_info[1] + _allowed_border) &  # width
        (all_anchors[:, 3] < im_info[0] + _allowed_border)  # height
    )[0]

    # keep only inside anchors
    anchors = all_anchors[inds_inside, :]  # 保留那些在图像内的anchor
    
    dontcareflagAll = np.tile(dontcareflag,(anchors.shape[0],1))

    # 至此,anchor准备好了
    # --------------------------------------------------------------
    # label: 1 is positive, 0 is negative, -1 is dont care

    labels = np.empty((len(inds_inside),), dtype=np.float32)
    labels.fill(-1)  # 初始化label,均为-1

    # 计算anchor和gt-box的overlap,用来给anchor上标签
    overlaps = bbox_overlaps(
        np.ascontiguousarray(anchors, dtype=np.float),
        np.ascontiguousarray(gt_boxes, dtype=np.float))  # 假设anchors有x个,gt_boxes有y个,返回的是一个(x,y)的数组
    # 存放每一个anchor和每一个gtbox之间的overlap
    
    argmax_overlaps = overlaps.argmax(axis=1)  # G#找到每个位置上9个anchor中与gtbox,overlap最大的那个
    max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
    max_overlaps_dontcare = dontcareflagAll[np.arange(len(inds_inside)), argmax_overlaps]
    
    gt_argmax_overlaps = overlaps.argmax(axis=0)  # (A)#找到和每一个gtbox,overlap最大的那个anchor
    gt_max_overlaps = overlaps[gt_argmax_overlaps,np.arange(overlaps.shape[1])]
    gt_argmax_overlaps_dontcare = dontcareflagAll[gt_argmax_overlaps,np.arange(overlaps.shape[1])]
    
    gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]
    gt_argmax_overlaps_dontcare = gt_argmax_overlaps_dontcare[ np.where(overlaps == gt_max_overlaps)[1]]
    
    if not cfg.RPN_CLOBBER_POSITIVES:
        # assign bg labels first so that positive labels can clobber them
        labels[max_overlaps < cfg.RPN_NEGATIVE_OVERLAP] = 0  # 先给背景上标签,小于0.3overlap的


    labels[gt_argmax_overlaps[gt_argmax_overlaps_dontcare==1]] = 1  # 每个位置上的9个anchor中overlap最大的认为是前景
    labels[(max_overlaps >= cfg.RPN_POSITIVE_OVERLAP) & (max_overlaps_dontcare==1)] = 1  # overlap大于0.7的认为是前景
    
    ###############################################
    index = np.where(labels==1)[0]
    fg_auchors = anchors[index]
    for item in fg_auchors:
        image = cv2.rectangle(image,(int(item[0]),int(item[1])),(int(item[2]),int(item[3])),(255,0,0))
    cv2.imwrite('result_fg.jpg',image)
    #####################################################   
    

    if cfg.RPN_CLOBBER_POSITIVES:
        # assign bg labels last so that negative labels can clobber positives
        labels[max_overlaps < cfg.RPN_NEGATIVE_OVERLAP] = 0



    # 至此, 上好标签,开始计算rpn-box的真值
    # --------------------------------------------------------------
    bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)
    bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])  # 根据anchor和gtbox计算得真值(anchor和gtbox之间的偏差)

    bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
    bbox_inside_weights[labels == 1, :] = np.array(cfg.RPN_BBOX_INSIDE_WEIGHTS)  # 内部权重,前景就给1,其他是0

    bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
    if cfg.RPN_POSITIVE_WEIGHT < 0:  # 暂时使用uniform 权重,也就是正样本是1,负样本是0
        positive_weights = np.ones((1, 4))
        negative_weights = np.zeros((1, 4))
    else:
        assert ((cfg.RPN_POSITIVE_WEIGHT > 0) &
                (cfg.RPN_POSITIVE_WEIGHT < 1))
        positive_weights = (cfg.RPN_POSITIVE_WEIGHT /
                            (np.sum(labels == 1)) + 1)
        negative_weights = ((1.0 - cfg.RPN_POSITIVE_WEIGHT) /
                            (np.sum(labels == 0)) + 1)
        
    bbox_outside_weights[labels == 1, :] = positive_weights  # 外部权重,前景是1,背景是0
    bbox_outside_weights[labels == 0, :] = negative_weights



    # map up to original set of anchors
    # 一开始是将超出图像范围的anchor直接丢掉的,现在在加回来
    labels = _unmap(labels, total_anchors, inds_inside, fill=-1)  # 这些anchor的label是-1,也即dontcare
    bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)  # 这些anchor的真值是0,也即没有值
    bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)  # 内部权重以0填充
    bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)  # 外部权重以0填充


    # labels
    labels = labels.reshape((1, height, width, A))  # reshap一下label
    rpn_labels = labels

    # bbox_targets
    bbox_targets = bbox_targets.reshape((1, height, width, A * 4))  # reshape
    rpn_bbox_targets = bbox_targets
    
    # bbox_inside_weights
    bbox_inside_weights = bbox_inside_weights.reshape((1, height, width, A * 4))
    rpn_bbox_inside_weights = bbox_inside_weights

    # bbox_outside_weights
    bbox_outside_weights = bbox_outside_weights.reshape((1, height, width, A * 4))
    rpn_bbox_outside_weights = bbox_outside_weights

    return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights
コード例 #2
0
def proposal_layer(rpn_cls_prob_reshape,
                   rpn_bbox_pred,
                   im_info,
                   _feat_stride=[
                       16,
                   ],
                   anchor_scales=[
                       16,
                   ]):
    """
    Parameters
    ----------
    rpn_cls_prob_reshape: (1 , H , W , Ax2) outputs of RPN, prob of bg or fg
                         NOTICE: the old version is ordered by (1, H, W, 2, A) !!!!
    rpn_bbox_pred: (1 , H , W , Ax4), rgs boxes output of RPN
    im_info: a list of [image_height, image_width, scale_ratios]
    _feat_stride: the downsampling ratio of feature map to the original input image
    anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16])
    ----------
    Returns
    ----------
    rpn_rois : (1 x H x W x A, 5) e.g. [0, x1, y1, x2, y2]
    # Algorithm:
    #
    # for each (H, W) location i
    #   generate A anchor boxes centered on cell i
    #   apply predicted bbox deltas at cell i to each of the A anchors
    # clip predicted boxes to image
    # remove predicted boxes with either height or width < threshold
    # sort all (proposal, score) pairs by score from highest to lowest
    # take top pre_nms_topN proposals before NMS
    # apply NMS with threshold 0.7 to remaining proposals
    # take after_nms_topN proposals after NMS
    # return the top proposals (-> RoIs top, scores top)
    #layer_params = yaml.load(self.param_str_)
    """

    _anchors = generate_anchors(
        scales=np.array(anchor_scales))  # 生成基本的10个anchor
    _num_anchors = _anchors.shape[0]  # 10个anchor

    im_info = im_info[0]  # 原始图像的高宽、缩放尺度

    assert rpn_cls_prob_reshape.shape[0] == 1, \
        'Only single item batches are supported'

    pre_nms_topN = cfg.RPN_PRE_NMS_TOP_N  # 12000,在做nms之前,最多保留的候选box数目
    post_nms_topN = cfg.RPN_POST_NMS_TOP_N  # 1000,做完nms之后,最多保留的box的数目
    nms_thresh = cfg.RPN_NMS_THRESH  # nms用参数,阈值是0.7
    min_size = cfg.RPN_MIN_SIZE  # 候选box的最小尺寸,目前是16,高宽均要大于16

    height, width = rpn_cls_prob_reshape.shape[1:3]  # feature-map的高宽
    width = width // 10

    # the first set of _num_anchors channels are bg probs
    # the second set are the fg probs, which we want
    # (1, H, W, A)
    scores = np.reshape(
        np.reshape(rpn_cls_prob_reshape,
                   [1, height, width, _num_anchors, 2])[:, :, :, :, 1],
        [1, height, width, _num_anchors])
    # 提取到object的分数,non-object的我们不关心

    bbox_deltas = rpn_bbox_pred  # 模型输出的pred bbox是相对值,需要进一步处理成真实图像中的坐标
    # im_info = bottom[2].data[0, :]

    if DEBUG:
        print('im_size: ({}, {})'.format(im_info[0], im_info[1]))
        print('scale: {}'.format(im_info[2]))

    # 1. Generate proposals from bbox deltas and shifted anchors
    if DEBUG:
        print('score map size: {}'.format(scores.shape))

    # Enumerate all shifts
    # 同anchor-target-layer-tf这个文件一样,生成anchor的shift,进一步得到整张图像上的所有anchor
    shift_x = np.arange(0, width) * _feat_stride
    shift_y = np.arange(0, height) * _feat_stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(),
                        shift_y.ravel())).transpose()

    # Enumerate all shifted anchors:
    #
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = _num_anchors
    K = shifts.shape[0]
    anchors = _anchors.reshape((1, A, 4)) + \
              shifts.reshape((1, K, 4)).transpose((1, 0, 2))
    anchors = anchors.reshape((K * A, 4))  # 这里得到的anchor就是整张图像上的所有anchor

    # Transpose and reshape predicted bbox transformations to get them
    # into the same order as the anchors:
    # bbox deltas will be (1, 4 * A, H, W) format
    # transpose to (1, H, W, 4 * A)
    # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a)
    # in slowest to fastest order
    bbox_deltas = bbox_deltas.reshape((-1, 4))  # (HxWxA, 4)

    # Same story for the scores:
    scores = scores.reshape((-1, 1))

    # Convert anchors into proposals via bbox transformations
    proposals = bbox_transform_inv(anchors, bbox_deltas)  # 做逆变换,得到box在图像上的真实坐标

    # 2. clip predicted boxes to image
    proposals = clip_boxes(proposals,
                           im_info[:2])  # 将所有的proposal修建一下,超出图像范围的将会被修剪掉

    # 3. remove predicted boxes with either height or width < threshold
    # (NOTE: convert min_size to input image scale stored in im_info[2])
    keep = _filter_boxes(proposals, min_size)  # 移除那些proposal小于一定尺寸的proposal
    proposals = proposals[keep, :]  # 保留剩下的proposal
    scores = scores[keep]
    bbox_deltas = bbox_deltas[keep, :]

    # # remove irregular boxes, too fat too tall
    # keep = _filter_irregular_boxes(proposals)
    # proposals = proposals[keep, :]
    # scores = scores[keep]

    # 4. sort all (proposal, score) pairs by score from highest to lowest
    # 5. take top pre_nms_topN (e.g. 6000)
    order = scores.ravel().argsort()[::-1]  # score按得分的高低进行排序
    if pre_nms_topN > 0:  # 保留12000个proposal进去做nms
        order = order[:pre_nms_topN]
    proposals = proposals[order, :]
    scores = scores[order]
    bbox_deltas = bbox_deltas[order, :]

    # 6. apply nms (e.g. threshold = 0.7)
    # 7. take after_nms_topN (e.g. 300)
    # 8. return the top proposals (-> RoIs top)
    keep = nms(np.hstack((proposals, scores)),
               nms_thresh)  # 进行nms操作,保留1000个proposal
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals = proposals[keep, :]
    scores = scores[keep]
    bbox_deltas = bbox_deltas[keep, :]

    # Output rois blob
    # Our RPN implementation only supports a single input image, so all
    # batch inds are 0
    blob = np.hstack(
        (scores.astype(np.float32,
                       copy=False), proposals.astype(np.float32, copy=False)))

    return blob, bbox_deltas
def anchor_target_layer(rpn_cls_score, gt_boxes, im_info, _feat_stride=[16, ], anchor_scales=[16, ]):
    """
    Assign anchors to ground-truth targets. Produces anchor classification
    labels and bounding-box regression targets.
    Parameters
    ----------
    rpn_cls_score: (1, H, W, Ax2) bg/fg scores of previous conv layer
    gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class]
    im_info: a list of [image_height, image_width, scale_ratios]
    _feat_stride: the downsampling ratio of feature map to the original input image
    anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16])
    ----------
    Returns
    ----------
    rpn_labels : (HxWxA, 1), for each anchor, 0 denotes bg, 1 fg, -1 dontcare
    rpn_bbox_targets: (HxWxA, 4), distances of the anchors to the gt_boxes(may contains some transform)
                            that are the regression objectives
    rpn_bbox_inside_weights: (HxWxA, 4) weights of each boxes, mainly accepts hyper param in cfg
    rpn_bbox_outside_weights: (HxWxA, 4) used to balance the fg/bg,
                            beacuse the numbers of bgs and fgs mays significiantly different
    """
    _anchors = generate_anchors(scales=np.array(anchor_scales))  # 生成基本的anchor,一共9个
    _num_anchors = _anchors.shape[0]  # 9个anchor

    if DEBUG:
        print('anchors:')
        print(_anchors)
        print('anchor shapes:')
        print(np.hstack((
            _anchors[:, 2::4] - _anchors[:, 0::4],
            _anchors[:, 3::4] - _anchors[:, 1::4],
        )))
        _counts = cfg.EPS
        _sums = np.zeros((1, 4))
        _squared_sums = np.zeros((1, 4))
        _fg_sum = 0
        _bg_sum = 0
        _count = 0

    # allow boxes to sit over the edge by a small amount
    _allowed_border = 0
    # map of shape (..., H, W)
    # height, width = rpn_cls_score.shape[1:3]

    im_info = im_info[0]  # 图像的高宽及通道数
    if DEBUG:
        print("im_info: ", im_info)
    # 在feature-map上定位anchor,并加上delta,得到在实际图像中anchor的真实坐标
    # Algorithm:
    # for each (H, W) location i
    #   generate 9 anchor boxes centered on cell i
    #   apply predicted bbox deltas at cell i to each of the 9 anchors
    # filter out-of-image anchors
    # measure GT overlap

    assert rpn_cls_score.shape[0] == 1, 'Only single item batches are supported'

    # map of shape (..., H, W)
    height, width = rpn_cls_score.shape[1:3]  # feature-map的高宽

    if DEBUG:
        print('AnchorTargetLayer: height', height, 'width', width)
        print('')
        print('im_size: ({}, {})'.format(im_info[0], im_info[1]))
        print('scale: {}'.format(im_info[2]))
        print('height, width: ({}, {})'.format(height, width))
        print('rpn: gt_boxes.shape', gt_boxes.shape)
        print('rpn: gt_boxes', gt_boxes)

    # 1. Generate proposals from bbox deltas and shifted anchors
    shift_x = np.arange(0, width) * _feat_stride
    shift_y = np.arange(0, height) * _feat_stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)  # in W H order
    # K is H x W
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),
                        shift_x.ravel(), shift_y.ravel())).transpose()  # 生成feature-map和真实image上anchor之间的偏移量
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = _num_anchors  # 9个anchor
    K = shifts.shape[0]  # 50*37,feature-map的宽乘高的大小
    all_anchors = (_anchors.reshape((1, A, 4)) +
                   shifts.reshape((1, K, 4)).transpose((1, 0, 2)))  # 相当于复制宽高的维度,然后相加
    all_anchors = all_anchors.reshape((K * A, 4))
    total_anchors = int(K * A)

    # only keep anchors inside the image
    # 仅保留那些还在图像内部的anchor,超出图像的都删掉
    inds_inside = np.where(
        (all_anchors[:, 0] >= -_allowed_border) &
        (all_anchors[:, 1] >= -_allowed_border) &
        (all_anchors[:, 2] < im_info[1] + _allowed_border) &  # width
        (all_anchors[:, 3] < im_info[0] + _allowed_border)  # height
    )[0]

    if DEBUG:
        print('total_anchors', total_anchors)
        print('inds_inside', len(inds_inside))

    # keep only inside anchors
    anchors = all_anchors[inds_inside, :]  # 保留那些在图像内的anchor
    if DEBUG:
        print('anchors.shape', anchors.shape)

    # 至此,anchor准备好了
    # --------------------------------------------------------------
    # label: 1 is positive, 0 is negative, -1 is dont care
    # (A)
    labels = np.empty((len(inds_inside),), dtype=np.float32)
    labels.fill(-1)  # 初始化label,均为-1

    # overlaps between the anchors and the gt boxes
    # overlaps (ex, gt), shape is A x G
    # 计算anchor和gt-box的overlap,用来给anchor上标签
    overlaps = bbox_overlaps(
        np.ascontiguousarray(anchors, dtype=np.float),
        np.ascontiguousarray(gt_boxes, dtype=np.float))  # 假设anchors有x个,gt_boxes有y个,返回的是一个(x,y)的数组
    # 存放每一个anchor和每一个gtbox之间的overlap
    argmax_overlaps = overlaps.argmax(axis=1)  # (A)#找到和每一个gtbox,overlap最大的那个anchor
    max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
    gt_argmax_overlaps = overlaps.argmax(axis=0)  # G#找到每个位置上9个anchor中与gtbox,overlap最大的那个
    gt_max_overlaps = overlaps[gt_argmax_overlaps,
                               np.arange(overlaps.shape[1])]
    gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]

    if not cfg.RPN_CLOBBER_POSITIVES:
        # assign bg labels first so that positive labels can clobber them
        labels[max_overlaps < cfg.RPN_NEGATIVE_OVERLAP] = 0  # 先给背景上标签,小于0.3overlap的

    # fg label: for each gt, anchor with highest overlap
    labels[gt_argmax_overlaps] = 1  # 每个位置上的9个anchor中overlap最大的认为是前景
    # fg label: above threshold IOU
    labels[max_overlaps >= cfg.RPN_POSITIVE_OVERLAP] = 1  # overlap大于0.7的认为是前景

    if cfg.RPN_CLOBBER_POSITIVES:
        # assign bg labels last so that negative labels can clobber positives
        labels[max_overlaps < cfg.RPN_NEGATIVE_OVERLAP] = 0

    # subsample positive labels if we have too many
    # 对正样本进行采样,如果正样本的数量太多的话
    # 限制正样本的数量不超过128个
    num_fg = int(cfg.RPN_FG_FRACTION * cfg.RPN_BATCHSIZE)
    fg_inds = np.where(labels == 1)[0]
    if len(fg_inds) > num_fg:
        disable_inds = npr.choice(
            fg_inds, size=(len(fg_inds) - num_fg), replace=False)  # 随机去除掉一些正样本
        labels[disable_inds] = -1  # 变为-1

    # subsample negative labels if we have too many
    # 对负样本进行采样,如果负样本的数量太多的话
    # 正负样本总数是256,限制正样本数目最多128,
    # 如果正样本数量小于128,差的那些就用负样本补上,凑齐256个样本
    num_bg = cfg.RPN_BATCHSIZE - np.sum(labels == 1)
    bg_inds = np.where(labels == 0)[0]
    if len(bg_inds) > num_bg:
        disable_inds = npr.choice(
            bg_inds, size=(len(bg_inds) - num_bg), replace=False)
        labels[disable_inds] = -1
        # print "was %s inds, disabling %s, now %s inds" % (
        # len(bg_inds), len(disable_inds), np.sum(labels == 0))

    # 至此, 上好标签,开始计算rpn-box的真值
    # --------------------------------------------------------------
    bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)
    bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])  # 根据anchor和gtbox计算得真值(anchor和gtbox之间的偏差)

    bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
    bbox_inside_weights[labels == 1, :] = np.array(cfg.RPN_BBOX_INSIDE_WEIGHTS)  # 内部权重,前景就给1,其他是0

    bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
    if cfg.RPN_POSITIVE_WEIGHT < 0:  # 暂时使用uniform 权重,也就是正样本是1,负样本是0
        # uniform weighting of examples (given non-uniform sampling)
        num_examples = np.sum(labels >= 0) + 1
        # positive_weights = np.ones((1, 4)) * 1.0 / num_examples
        # negative_weights = np.ones((1, 4)) * 1.0 / num_examples
        positive_weights = np.ones((1, 4))
        negative_weights = np.zeros((1, 4))
    else:
        assert ((cfg.RPN_POSITIVE_WEIGHT > 0) &
                (cfg.RPN_POSITIVE_WEIGHT < 1))
        positive_weights = (cfg.RPN_POSITIVE_WEIGHT /
                            (np.sum(labels == 1)) + 1)
        negative_weights = ((1.0 - cfg.RPN_POSITIVE_WEIGHT) /
                            (np.sum(labels == 0)) + 1)
    bbox_outside_weights[labels == 1, :] = positive_weights  # 外部权重,前景是1,背景是0
    bbox_outside_weights[labels == 0, :] = negative_weights

    if DEBUG:
        _sums += bbox_targets[labels == 1, :].sum(axis=0)
        _squared_sums += (bbox_targets[labels == 1, :] ** 2).sum(axis=0)
        _counts += np.sum(labels == 1)
        means = _sums / _counts
        stds = np.sqrt(_squared_sums / _counts - means ** 2)
        print('means:')
        print(means)
        print('stdevs:')
        print(stds)

    # map up to original set of anchors
    # 一开始是将超出图像范围的anchor直接丢掉的,现在在加回来
    labels = _unmap(labels, total_anchors, inds_inside, fill=-1)  # 这些anchor的label是-1,也即dontcare
    bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)  # 这些anchor的真值是0,也即没有值
    bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)  # 内部权重以0填充
    bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)  # 外部权重以0填充

    if DEBUG:
        print('rpn: max max_overlap', np.max(max_overlaps))
        print('rpn: num_positive', np.sum(labels == 1))
        print('rpn: num_negative', np.sum(labels == 0))
        _fg_sum += np.sum(labels == 1)
        _bg_sum += np.sum(labels == 0)
        _count += 1
        print('rpn: num_positive avg', _fg_sum / _count)
        print('rpn: num_negative avg', _bg_sum / _count)

    # labels
    labels = labels.reshape((1, height, width, A))  # reshap一下label
    rpn_labels = labels

    # bbox_targets
    bbox_targets = bbox_targets \
        .reshape((1, height, width, A * 4))  # reshape

    rpn_bbox_targets = bbox_targets
    # bbox_inside_weights
    bbox_inside_weights = bbox_inside_weights \
        .reshape((1, height, width, A * 4))

    rpn_bbox_inside_weights = bbox_inside_weights

    # bbox_outside_weights
    bbox_outside_weights = bbox_outside_weights \
        .reshape((1, height, width, A * 4))
    rpn_bbox_outside_weights = bbox_outside_weights

    if DEBUG:
        print("anchor target set")
    return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights