def anchor_target_layer(image,rpn_cls_score, gt_boxes, im_info, _feat_stride=[16, ], anchor_scales=[16, ]): """ Assign anchors to ground-truth targets. Produces anchor classification labels and bounding-box regression targets. Parameters ---------- rpn_cls_score: (1, H, W, Ax2) bg/fg scores of previous conv layer gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class] im_info: a list of [image_height, image_width, scale_ratios] _feat_stride: the downsampling ratio of feature map to the original input image anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16]) ---------- Returns ---------- rpn_labels : (HxWxA, 1), for each anchor, 0 denotes bg, 1 fg, -1 dontcare rpn_bbox_targets: (HxWxA, 4), distances of the anchors to the gt_boxes(may contains some transform) that are the regression objectives rpn_bbox_inside_weights: (HxWxA, 4) weights of each boxes, mainly accepts hyper param in cfg rpn_bbox_outside_weights: (HxWxA, 4) used to balance the fg/bg, beacuse the numbers of bgs and fgs mays significiantly different """ try: for item in gt_boxes: color = (0,0,255) image1 = cv2.rectangle(image,(int(item[0]),int(item[1])),(int(item[2]),int(item[3])),color) cv2.imwrite('result_auchor.jpg',image1) except: print('warning!!!!!') _anchors = generate_anchors(scales=np.array(anchor_scales)) # 生成基本的anchor,一共9个 _num_anchors = _anchors.shape[0] # 9个anchor gt_boxes = np.array(gt_boxes) dontcareflag = gt_boxes[:,-1].reshape(-1) gt_boxes = gt_boxes[:,:-1] # allow boxes to sit over the edge by a small amount _allowed_border = 0 im_info = im_info[0] # 图像的高宽及通道数 assert rpn_cls_score.shape[0] == 1, 'Only single item batches are supported' # map of shape (..., H, W) height, width = rpn_cls_score.shape[1:3] # feature-map的高宽 # 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * _feat_stride shift_y = np.arange(0, height) * _feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) # in W H order # K is H x W shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # 生成feature-map和真实image上anchor之间的偏移量 # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = _num_anchors # 9个anchor K = shifts.shape[0] # 50*37,feature-map的宽乘高的大小 all_anchors = (_anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) # 相当于复制宽高的维度,然后相加 all_anchors = all_anchors.reshape((K * A, 4)) total_anchors = int(K * A) # 仅保留那些还在图像内部的anchor,超出图像的都删掉 inds_inside = np.where( (all_anchors[:, 0] >= -_allowed_border) & (all_anchors[:, 1] >= -_allowed_border) & (all_anchors[:, 2] < im_info[1] + _allowed_border) & # width (all_anchors[:, 3] < im_info[0] + _allowed_border) # height )[0] # keep only inside anchors anchors = all_anchors[inds_inside, :] # 保留那些在图像内的anchor dontcareflagAll = np.tile(dontcareflag,(anchors.shape[0],1)) # 至此,anchor准备好了 # -------------------------------------------------------------- # label: 1 is positive, 0 is negative, -1 is dont care labels = np.empty((len(inds_inside),), dtype=np.float32) labels.fill(-1) # 初始化label,均为-1 # 计算anchor和gt-box的overlap,用来给anchor上标签 overlaps = bbox_overlaps( np.ascontiguousarray(anchors, dtype=np.float), np.ascontiguousarray(gt_boxes, dtype=np.float)) # 假设anchors有x个,gt_boxes有y个,返回的是一个(x,y)的数组 # 存放每一个anchor和每一个gtbox之间的overlap argmax_overlaps = overlaps.argmax(axis=1) # G#找到每个位置上9个anchor中与gtbox,overlap最大的那个 max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps] max_overlaps_dontcare = dontcareflagAll[np.arange(len(inds_inside)), argmax_overlaps] gt_argmax_overlaps = overlaps.argmax(axis=0) # (A)#找到和每一个gtbox,overlap最大的那个anchor gt_max_overlaps = overlaps[gt_argmax_overlaps,np.arange(overlaps.shape[1])] gt_argmax_overlaps_dontcare = dontcareflagAll[gt_argmax_overlaps,np.arange(overlaps.shape[1])] gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0] gt_argmax_overlaps_dontcare = gt_argmax_overlaps_dontcare[ np.where(overlaps == gt_max_overlaps)[1]] if not cfg.RPN_CLOBBER_POSITIVES: # assign bg labels first so that positive labels can clobber them labels[max_overlaps < cfg.RPN_NEGATIVE_OVERLAP] = 0 # 先给背景上标签,小于0.3overlap的 labels[gt_argmax_overlaps[gt_argmax_overlaps_dontcare==1]] = 1 # 每个位置上的9个anchor中overlap最大的认为是前景 labels[(max_overlaps >= cfg.RPN_POSITIVE_OVERLAP) & (max_overlaps_dontcare==1)] = 1 # overlap大于0.7的认为是前景 ############################################### index = np.where(labels==1)[0] fg_auchors = anchors[index] for item in fg_auchors: image = cv2.rectangle(image,(int(item[0]),int(item[1])),(int(item[2]),int(item[3])),(255,0,0)) cv2.imwrite('result_fg.jpg',image) ##################################################### if cfg.RPN_CLOBBER_POSITIVES: # assign bg labels last so that negative labels can clobber positives labels[max_overlaps < cfg.RPN_NEGATIVE_OVERLAP] = 0 # 至此, 上好标签,开始计算rpn-box的真值 # -------------------------------------------------------------- bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32) bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :]) # 根据anchor和gtbox计算得真值(anchor和gtbox之间的偏差) bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32) bbox_inside_weights[labels == 1, :] = np.array(cfg.RPN_BBOX_INSIDE_WEIGHTS) # 内部权重,前景就给1,其他是0 bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32) if cfg.RPN_POSITIVE_WEIGHT < 0: # 暂时使用uniform 权重,也就是正样本是1,负样本是0 positive_weights = np.ones((1, 4)) negative_weights = np.zeros((1, 4)) else: assert ((cfg.RPN_POSITIVE_WEIGHT > 0) & (cfg.RPN_POSITIVE_WEIGHT < 1)) positive_weights = (cfg.RPN_POSITIVE_WEIGHT / (np.sum(labels == 1)) + 1) negative_weights = ((1.0 - cfg.RPN_POSITIVE_WEIGHT) / (np.sum(labels == 0)) + 1) bbox_outside_weights[labels == 1, :] = positive_weights # 外部权重,前景是1,背景是0 bbox_outside_weights[labels == 0, :] = negative_weights # map up to original set of anchors # 一开始是将超出图像范围的anchor直接丢掉的,现在在加回来 labels = _unmap(labels, total_anchors, inds_inside, fill=-1) # 这些anchor的label是-1,也即dontcare bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0) # 这些anchor的真值是0,也即没有值 bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0) # 内部权重以0填充 bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0) # 外部权重以0填充 # labels labels = labels.reshape((1, height, width, A)) # reshap一下label rpn_labels = labels # bbox_targets bbox_targets = bbox_targets.reshape((1, height, width, A * 4)) # reshape rpn_bbox_targets = bbox_targets # bbox_inside_weights bbox_inside_weights = bbox_inside_weights.reshape((1, height, width, A * 4)) rpn_bbox_inside_weights = bbox_inside_weights # bbox_outside_weights bbox_outside_weights = bbox_outside_weights.reshape((1, height, width, A * 4)) rpn_bbox_outside_weights = bbox_outside_weights return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights
def proposal_layer(rpn_cls_prob_reshape, rpn_bbox_pred, im_info, _feat_stride=[ 16, ], anchor_scales=[ 16, ]): """ Parameters ---------- rpn_cls_prob_reshape: (1 , H , W , Ax2) outputs of RPN, prob of bg or fg NOTICE: the old version is ordered by (1, H, W, 2, A) !!!! rpn_bbox_pred: (1 , H , W , Ax4), rgs boxes output of RPN im_info: a list of [image_height, image_width, scale_ratios] _feat_stride: the downsampling ratio of feature map to the original input image anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16]) ---------- Returns ---------- rpn_rois : (1 x H x W x A, 5) e.g. [0, x1, y1, x2, y2] # Algorithm: # # for each (H, W) location i # generate A anchor boxes centered on cell i # apply predicted bbox deltas at cell i to each of the A anchors # clip predicted boxes to image # remove predicted boxes with either height or width < threshold # sort all (proposal, score) pairs by score from highest to lowest # take top pre_nms_topN proposals before NMS # apply NMS with threshold 0.7 to remaining proposals # take after_nms_topN proposals after NMS # return the top proposals (-> RoIs top, scores top) #layer_params = yaml.load(self.param_str_) """ _anchors = generate_anchors( scales=np.array(anchor_scales)) # 生成基本的10个anchor _num_anchors = _anchors.shape[0] # 10个anchor im_info = im_info[0] # 原始图像的高宽、缩放尺度 assert rpn_cls_prob_reshape.shape[0] == 1, \ 'Only single item batches are supported' pre_nms_topN = cfg.RPN_PRE_NMS_TOP_N # 12000,在做nms之前,最多保留的候选box数目 post_nms_topN = cfg.RPN_POST_NMS_TOP_N # 1000,做完nms之后,最多保留的box的数目 nms_thresh = cfg.RPN_NMS_THRESH # nms用参数,阈值是0.7 min_size = cfg.RPN_MIN_SIZE # 候选box的最小尺寸,目前是16,高宽均要大于16 height, width = rpn_cls_prob_reshape.shape[1:3] # feature-map的高宽 width = width // 10 # the first set of _num_anchors channels are bg probs # the second set are the fg probs, which we want # (1, H, W, A) scores = np.reshape( np.reshape(rpn_cls_prob_reshape, [1, height, width, _num_anchors, 2])[:, :, :, :, 1], [1, height, width, _num_anchors]) # 提取到object的分数,non-object的我们不关心 bbox_deltas = rpn_bbox_pred # 模型输出的pred bbox是相对值,需要进一步处理成真实图像中的坐标 # im_info = bottom[2].data[0, :] if DEBUG: print('im_size: ({}, {})'.format(im_info[0], im_info[1])) print('scale: {}'.format(im_info[2])) # 1. Generate proposals from bbox deltas and shifted anchors if DEBUG: print('score map size: {}'.format(scores.shape)) # Enumerate all shifts # 同anchor-target-layer-tf这个文件一样,生成anchor的shift,进一步得到整张图像上的所有anchor shift_x = np.arange(0, width) * _feat_stride shift_y = np.arange(0, height) * _feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # Enumerate all shifted anchors: # # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = _num_anchors K = shifts.shape[0] anchors = _anchors.reshape((1, A, 4)) + \ shifts.reshape((1, K, 4)).transpose((1, 0, 2)) anchors = anchors.reshape((K * A, 4)) # 这里得到的anchor就是整张图像上的所有anchor # Transpose and reshape predicted bbox transformations to get them # into the same order as the anchors: # bbox deltas will be (1, 4 * A, H, W) format # transpose to (1, H, W, 4 * A) # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a) # in slowest to fastest order bbox_deltas = bbox_deltas.reshape((-1, 4)) # (HxWxA, 4) # Same story for the scores: scores = scores.reshape((-1, 1)) # Convert anchors into proposals via bbox transformations proposals = bbox_transform_inv(anchors, bbox_deltas) # 做逆变换,得到box在图像上的真实坐标 # 2. clip predicted boxes to image proposals = clip_boxes(proposals, im_info[:2]) # 将所有的proposal修建一下,超出图像范围的将会被修剪掉 # 3. remove predicted boxes with either height or width < threshold # (NOTE: convert min_size to input image scale stored in im_info[2]) keep = _filter_boxes(proposals, min_size) # 移除那些proposal小于一定尺寸的proposal proposals = proposals[keep, :] # 保留剩下的proposal scores = scores[keep] bbox_deltas = bbox_deltas[keep, :] # # remove irregular boxes, too fat too tall # keep = _filter_irregular_boxes(proposals) # proposals = proposals[keep, :] # scores = scores[keep] # 4. sort all (proposal, score) pairs by score from highest to lowest # 5. take top pre_nms_topN (e.g. 6000) order = scores.ravel().argsort()[::-1] # score按得分的高低进行排序 if pre_nms_topN > 0: # 保留12000个proposal进去做nms order = order[:pre_nms_topN] proposals = proposals[order, :] scores = scores[order] bbox_deltas = bbox_deltas[order, :] # 6. apply nms (e.g. threshold = 0.7) # 7. take after_nms_topN (e.g. 300) # 8. return the top proposals (-> RoIs top) keep = nms(np.hstack((proposals, scores)), nms_thresh) # 进行nms操作,保留1000个proposal if post_nms_topN > 0: keep = keep[:post_nms_topN] proposals = proposals[keep, :] scores = scores[keep] bbox_deltas = bbox_deltas[keep, :] # Output rois blob # Our RPN implementation only supports a single input image, so all # batch inds are 0 blob = np.hstack( (scores.astype(np.float32, copy=False), proposals.astype(np.float32, copy=False))) return blob, bbox_deltas
def anchor_target_layer(rpn_cls_score, gt_boxes, im_info, _feat_stride=[16, ], anchor_scales=[16, ]): """ Assign anchors to ground-truth targets. Produces anchor classification labels and bounding-box regression targets. Parameters ---------- rpn_cls_score: (1, H, W, Ax2) bg/fg scores of previous conv layer gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class] im_info: a list of [image_height, image_width, scale_ratios] _feat_stride: the downsampling ratio of feature map to the original input image anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16]) ---------- Returns ---------- rpn_labels : (HxWxA, 1), for each anchor, 0 denotes bg, 1 fg, -1 dontcare rpn_bbox_targets: (HxWxA, 4), distances of the anchors to the gt_boxes(may contains some transform) that are the regression objectives rpn_bbox_inside_weights: (HxWxA, 4) weights of each boxes, mainly accepts hyper param in cfg rpn_bbox_outside_weights: (HxWxA, 4) used to balance the fg/bg, beacuse the numbers of bgs and fgs mays significiantly different """ _anchors = generate_anchors(scales=np.array(anchor_scales)) # 生成基本的anchor,一共9个 _num_anchors = _anchors.shape[0] # 9个anchor if DEBUG: print('anchors:') print(_anchors) print('anchor shapes:') print(np.hstack(( _anchors[:, 2::4] - _anchors[:, 0::4], _anchors[:, 3::4] - _anchors[:, 1::4], ))) _counts = cfg.EPS _sums = np.zeros((1, 4)) _squared_sums = np.zeros((1, 4)) _fg_sum = 0 _bg_sum = 0 _count = 0 # allow boxes to sit over the edge by a small amount _allowed_border = 0 # map of shape (..., H, W) # height, width = rpn_cls_score.shape[1:3] im_info = im_info[0] # 图像的高宽及通道数 if DEBUG: print("im_info: ", im_info) # 在feature-map上定位anchor,并加上delta,得到在实际图像中anchor的真实坐标 # Algorithm: # for each (H, W) location i # generate 9 anchor boxes centered on cell i # apply predicted bbox deltas at cell i to each of the 9 anchors # filter out-of-image anchors # measure GT overlap assert rpn_cls_score.shape[0] == 1, 'Only single item batches are supported' # map of shape (..., H, W) height, width = rpn_cls_score.shape[1:3] # feature-map的高宽 if DEBUG: print('AnchorTargetLayer: height', height, 'width', width) print('') print('im_size: ({}, {})'.format(im_info[0], im_info[1])) print('scale: {}'.format(im_info[2])) print('height, width: ({}, {})'.format(height, width)) print('rpn: gt_boxes.shape', gt_boxes.shape) print('rpn: gt_boxes', gt_boxes) # 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * _feat_stride shift_y = np.arange(0, height) * _feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) # in W H order # K is H x W shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # 生成feature-map和真实image上anchor之间的偏移量 # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = _num_anchors # 9个anchor K = shifts.shape[0] # 50*37,feature-map的宽乘高的大小 all_anchors = (_anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) # 相当于复制宽高的维度,然后相加 all_anchors = all_anchors.reshape((K * A, 4)) total_anchors = int(K * A) # only keep anchors inside the image # 仅保留那些还在图像内部的anchor,超出图像的都删掉 inds_inside = np.where( (all_anchors[:, 0] >= -_allowed_border) & (all_anchors[:, 1] >= -_allowed_border) & (all_anchors[:, 2] < im_info[1] + _allowed_border) & # width (all_anchors[:, 3] < im_info[0] + _allowed_border) # height )[0] if DEBUG: print('total_anchors', total_anchors) print('inds_inside', len(inds_inside)) # keep only inside anchors anchors = all_anchors[inds_inside, :] # 保留那些在图像内的anchor if DEBUG: print('anchors.shape', anchors.shape) # 至此,anchor准备好了 # -------------------------------------------------------------- # label: 1 is positive, 0 is negative, -1 is dont care # (A) labels = np.empty((len(inds_inside),), dtype=np.float32) labels.fill(-1) # 初始化label,均为-1 # overlaps between the anchors and the gt boxes # overlaps (ex, gt), shape is A x G # 计算anchor和gt-box的overlap,用来给anchor上标签 overlaps = bbox_overlaps( np.ascontiguousarray(anchors, dtype=np.float), np.ascontiguousarray(gt_boxes, dtype=np.float)) # 假设anchors有x个,gt_boxes有y个,返回的是一个(x,y)的数组 # 存放每一个anchor和每一个gtbox之间的overlap argmax_overlaps = overlaps.argmax(axis=1) # (A)#找到和每一个gtbox,overlap最大的那个anchor max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps] gt_argmax_overlaps = overlaps.argmax(axis=0) # G#找到每个位置上9个anchor中与gtbox,overlap最大的那个 gt_max_overlaps = overlaps[gt_argmax_overlaps, np.arange(overlaps.shape[1])] gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0] if not cfg.RPN_CLOBBER_POSITIVES: # assign bg labels first so that positive labels can clobber them labels[max_overlaps < cfg.RPN_NEGATIVE_OVERLAP] = 0 # 先给背景上标签,小于0.3overlap的 # fg label: for each gt, anchor with highest overlap labels[gt_argmax_overlaps] = 1 # 每个位置上的9个anchor中overlap最大的认为是前景 # fg label: above threshold IOU labels[max_overlaps >= cfg.RPN_POSITIVE_OVERLAP] = 1 # overlap大于0.7的认为是前景 if cfg.RPN_CLOBBER_POSITIVES: # assign bg labels last so that negative labels can clobber positives labels[max_overlaps < cfg.RPN_NEGATIVE_OVERLAP] = 0 # subsample positive labels if we have too many # 对正样本进行采样,如果正样本的数量太多的话 # 限制正样本的数量不超过128个 num_fg = int(cfg.RPN_FG_FRACTION * cfg.RPN_BATCHSIZE) fg_inds = np.where(labels == 1)[0] if len(fg_inds) > num_fg: disable_inds = npr.choice( fg_inds, size=(len(fg_inds) - num_fg), replace=False) # 随机去除掉一些正样本 labels[disable_inds] = -1 # 变为-1 # subsample negative labels if we have too many # 对负样本进行采样,如果负样本的数量太多的话 # 正负样本总数是256,限制正样本数目最多128, # 如果正样本数量小于128,差的那些就用负样本补上,凑齐256个样本 num_bg = cfg.RPN_BATCHSIZE - np.sum(labels == 1) bg_inds = np.where(labels == 0)[0] if len(bg_inds) > num_bg: disable_inds = npr.choice( bg_inds, size=(len(bg_inds) - num_bg), replace=False) labels[disable_inds] = -1 # print "was %s inds, disabling %s, now %s inds" % ( # len(bg_inds), len(disable_inds), np.sum(labels == 0)) # 至此, 上好标签,开始计算rpn-box的真值 # -------------------------------------------------------------- bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32) bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :]) # 根据anchor和gtbox计算得真值(anchor和gtbox之间的偏差) bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32) bbox_inside_weights[labels == 1, :] = np.array(cfg.RPN_BBOX_INSIDE_WEIGHTS) # 内部权重,前景就给1,其他是0 bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32) if cfg.RPN_POSITIVE_WEIGHT < 0: # 暂时使用uniform 权重,也就是正样本是1,负样本是0 # uniform weighting of examples (given non-uniform sampling) num_examples = np.sum(labels >= 0) + 1 # positive_weights = np.ones((1, 4)) * 1.0 / num_examples # negative_weights = np.ones((1, 4)) * 1.0 / num_examples positive_weights = np.ones((1, 4)) negative_weights = np.zeros((1, 4)) else: assert ((cfg.RPN_POSITIVE_WEIGHT > 0) & (cfg.RPN_POSITIVE_WEIGHT < 1)) positive_weights = (cfg.RPN_POSITIVE_WEIGHT / (np.sum(labels == 1)) + 1) negative_weights = ((1.0 - cfg.RPN_POSITIVE_WEIGHT) / (np.sum(labels == 0)) + 1) bbox_outside_weights[labels == 1, :] = positive_weights # 外部权重,前景是1,背景是0 bbox_outside_weights[labels == 0, :] = negative_weights if DEBUG: _sums += bbox_targets[labels == 1, :].sum(axis=0) _squared_sums += (bbox_targets[labels == 1, :] ** 2).sum(axis=0) _counts += np.sum(labels == 1) means = _sums / _counts stds = np.sqrt(_squared_sums / _counts - means ** 2) print('means:') print(means) print('stdevs:') print(stds) # map up to original set of anchors # 一开始是将超出图像范围的anchor直接丢掉的,现在在加回来 labels = _unmap(labels, total_anchors, inds_inside, fill=-1) # 这些anchor的label是-1,也即dontcare bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0) # 这些anchor的真值是0,也即没有值 bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0) # 内部权重以0填充 bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0) # 外部权重以0填充 if DEBUG: print('rpn: max max_overlap', np.max(max_overlaps)) print('rpn: num_positive', np.sum(labels == 1)) print('rpn: num_negative', np.sum(labels == 0)) _fg_sum += np.sum(labels == 1) _bg_sum += np.sum(labels == 0) _count += 1 print('rpn: num_positive avg', _fg_sum / _count) print('rpn: num_negative avg', _bg_sum / _count) # labels labels = labels.reshape((1, height, width, A)) # reshap一下label rpn_labels = labels # bbox_targets bbox_targets = bbox_targets \ .reshape((1, height, width, A * 4)) # reshape rpn_bbox_targets = bbox_targets # bbox_inside_weights bbox_inside_weights = bbox_inside_weights \ .reshape((1, height, width, A * 4)) rpn_bbox_inside_weights = bbox_inside_weights # bbox_outside_weights bbox_outside_weights = bbox_outside_weights \ .reshape((1, height, width, A * 4)) rpn_bbox_outside_weights = bbox_outside_weights if DEBUG: print("anchor target set") return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights