コード例 #1
0
def CalculateMetrics(fground_truth, mground_truth, predicted_map):

    # import ipdb; ipdb.set_trace()

    predicted_map = normalize_map(predicted_map)
    predicted_map = postprocess_prediction(
        predicted_map, (predicted_map.shape[0], predicted_map.shape[1]))
    predicted_map = normalize_map(predicted_map)
    predicted_map *= 255

    fground_truth = cv2.resize(fground_truth, (0, 0), fx=0.5, fy=0.5)
    predicted_map = cv2.resize(predicted_map, (0, 0), fx=0.5, fy=0.5)
    mground_truth = cv2.resize(mground_truth, (0, 0), fx=0.5, fy=0.5)

    fground_truth = fground_truth.astype(np.float32) / 255
    predicted_map = predicted_map.astype(np.float32)
    mground_truth = mground_truth.astype(np.float32)

    AUC_judd_answer = AUC_Judd(predicted_map, fground_truth)
    AUC_Borji_answer = AUC_Borji(predicted_map, fground_truth)
    nss_answer = NSS(predicted_map, fground_truth)
    cc_answer = CC(predicted_map, mground_truth)
    sim_answer = SIM(predicted_map, mground_truth)

    return AUC_judd_answer, AUC_Borji_answer, nss_answer, cc_answer, sim_answer
コード例 #2
0
def inference(y):
    predictions = []
    files = sorted(os.listdir(os.path.join(INPUT_PATH, '{:03d}'.format(y))),
                   key=lambda x: int(x.split(".")[0]))
    for file in files:
        filename = os.path.join(INPUT_PATH, '{:03d}'.format(y), file)
        image_tensor, image_size = load_image(filename)
        if DEPTH:
            num_image = int(file.split('.')[0])
            if num_image < 10:
                ima_name = '0010.png'
            else:
                ima_name = '{:04d}.png'.format(int(num_image / 10) * 10)
            depth = cv2.imread(os.path.join(DEPTH_PATH, str(y), ima_name), 0)
            depth = cv2.resize(depth, (256, 192), interpolation=cv2.INTER_AREA)
            depth = depth.astype(np.float32)
            depth = np.expand_dims(depth, axis=0)
            depth = torch.FloatTensor(depth)
            image_tensor = torch.cat([image_tensor, depth], 0)
        if COORD:
            c1 = np.empty(shape=(192, 256))
            c2 = np.empty(shape=(192, 256))
            for i in range(0, 256):
                c1[:, i] = np.linspace(-1, 1, 192)
            for i in range(0, 192):
                c2[i, :] = np.linspace(-1, 1, 256)
            c1 = c1.astype(np.float32)
            c2 = c2.astype(np.float32)
            c1 = np.expand_dims(c1, axis=0)
            c2 = np.expand_dims(c2, axis=0)
            c1 = torch.FloatTensor(c1)
            c2 = torch.FloatTensor(c2)
            image_tensor = torch.cat([image_tensor, c1], 0)
            image_tensor = torch.cat([image_tensor, c2], 0)
        if USE_GPU:
            image_tensor = image_tensor.cuda()

        # run model inference
        prediction = model.forward(
            image_tensor[None, ...])  # add extra batch dimension

        # get result to cpu and squeeze dimensions
        if USE_GPU:
            prediction = prediction.squeeze().data.cpu().numpy()
        else:
            prediction = prediction.squeeze().data.numpy()

        # postprocess
        # first normalize [0,1]
        prediction = normalize_map(prediction)
        saliency = postprocess_prediction(prediction, image_size)
        saliency = normalize_map(saliency)
        saliency *= 255
        predictions.append(saliency)
    return predictions
コード例 #3
0
def main():
    """
	Runs pytorch-SalGAN on a sample images

	"""
    # create output file
    if not os.path.exists(OUTPUT_PATH):
        os.makedirs(OUTPUT_PATH)

    # init model with pre-trained weights
    model = create_model()

    model.load_state_dict(torch.load(PATH_PYTORCH_WEIGHTS)['state_dict'])
    model.eval()

    # if GPU is enabled
    if USE_GPU:
        model.cuda()

    if not os.path.exists(OUTPUT_PATH):
        os.makedirs(OUTPUT_PATH)
    # load and preprocess images in folder
    for img in os.listdir(INPUT_PATH):
        if 'val' in img:
            filename = os.path.join(INPUT_PATH, img)
            image_tensor, image_size = load_image(filename)

            if USE_GPU:
                image_tensor = image_tensor.cuda()

            # run model inference
            prediction = model.forward(
                image_tensor[None, ...])  # add extra batch dimension

            # get result to cpu and squeeze dimensions
            if USE_GPU:
                prediction = prediction.squeeze().data.cpu().numpy()
            else:
                prediction = prediction.squeeze().data.numpy()

            # postprocess
            # first normalize [0,1]
            prediction = normalize_map(prediction)
            saliency = postprocess_prediction(prediction, image_size)
            saliency = normalize_map(saliency)
            saliency *= 255
            saliency = saliency.astype(np.uint8)
            # save saliency

            cv2.imwrite(os.path.join(OUTPUT_PATH, img), saliency)
            print("Processed image {} ".format(img), end="\r")
            sys.stdout.flush()
    print("\n")
コード例 #4
0
ファイル: cropcheck.py プロジェクト: Linardos/SalBCE
# convert to torch Tensor
image = torch.FloatTensor(image)
image2 = torch.FloatTensor(image2)

# swap channel dimensions
image = image.permute(2, 0, 1)
image2 = image2.permute(2, 0, 1)

if USE_GPU:
    image = image.cuda()
    image2 = image2.cuda()

for img, name in zip([image, image2], ["nocrop.png", "crop.png"]):
    # run model inference
    prediction = model.forward(img[None, ...])  # add extra batch dimension

    # get result to cpu and squeeze dimensions
    if USE_GPU:
        prediction = prediction.squeeze().data.cpu().numpy()
    else:
        prediction = prediction.squeeze().data.numpy()

    # postprocess
    # first normalize [0,1]
    prediction = normalize_map(prediction)
    saliency = postprocess_prediction(prediction, (320, 640))
    saliency = normalize_map(saliency)
    saliency *= 255
    cv2.imwrite(os.path.join("/home/saliency_maps/", name), saliency)