コード例 #1
0
ファイル: ris_reader.py プロジェクト: lrjconan/img-count
def read(folder):
    log.info('Reading pretrained network from {}'.format(folder))
    saver = Saver(folder)
    ckpt_info = saver.get_ckpt_info()
    model_opt = ckpt_info['model_opt']
    ckpt_fname = ckpt_info['ckpt_fname']
    model_id = ckpt_info['model_id']
    model = attn_model.get_model(model_opt)
    ctrl_cnn_nlayers = len(model_opt['ctrl_cnn_filter_size'])
    ctrl_mlp_nlayers = model_opt['num_ctrl_mlp_layers']
    attn_cnn_nlayers = len(model_opt['attn_cnn_filter_size'])
    attn_mlp_nlayers = model_opt['num_attn_mlp_layers']
    attn_dcnn_nlayers = len(model_opt['attn_dcnn_filter_size'])
    timespan = model_opt['timespan']
    glimpse_mlp_nlayers = model_opt['num_glimpse_mlp_layers']
    score_mlp_nlayers = 1
    weights = {}
    sess = tf.Session()
    saver.restore(sess, ckpt_fname)

    output_list = []
    for net, nlayers in zip(['ctrl_cnn', 'ctrl_mlp', 'glimpse_mlp',
                             'score_mlp', 'attn_cnn', 'attn_mlp', 'attn_dcnn'],
                            [ctrl_cnn_nlayers, ctrl_mlp_nlayers,
                             glimpse_mlp_nlayers, score_mlp_nlayers,
                             attn_cnn_nlayers, attn_mlp_nlayers,
                             attn_dcnn_nlayers]):
        for ii in xrange(nlayers):
            for w in ['w', 'b']:
                key = '{}_{}_{}'.format(net, w, ii)
                log.info(key)
                output_list.append(key)
            if net == 'ctrl_cnn' or net == 'attn_cnn' or net == 'attn_dcnn':
                for tt in xrange(timespan):
                    for w in ['beta', 'gamma']:
                        key = '{}_{}_{}_{}'.format(net, ii, tt, w)
                        log.info(key)
                        output_list.append(key)

    for net in ['ctrl_lstm']:
        for w in ['w_xi', 'w_hi', 'b_i', 'w_xf', 'w_hf', 'b_f', 'w_xu',
                  'w_hu', 'b_u', 'w_xo', 'w_ho', 'b_o']:
            key = '{}_{}'.format(net, w)
            log.info(key)
            output_list.append(key)

    output_var = []
    for key in output_list:
        output_var.append(model[key])

    output_var_value = sess.run(output_var)

    for key, value in zip(output_list, output_var_value):
        weights[key] = value
        log.info(key)
        log.info(value.shape)

    return weights
コード例 #2
0
def read(folder):
    log.info('Reading pretrained network from {}'.format(folder))
    saver = Saver(folder)
    ckpt_info = saver.get_ckpt_info()
    model_opt = ckpt_info['model_opt']
    ckpt_fname = ckpt_info['ckpt_fname']
    model_id = ckpt_info['model_id']
    model = box_model.get_model(model_opt)
    ctrl_cnn_nlayers = len(model_opt['ctrl_cnn_filter_size'])
    ctrl_mlp_nlayers = model_opt['num_ctrl_mlp_layers']
    timespan = model_opt['timespan']
    glimpse_mlp_nlayers = model_opt['num_glimpse_mlp_layers']
    weights = {}
    sess = tf.Session()
    saver.restore(sess, ckpt_fname)

    output_list = []
    for net, nlayers in zip(['ctrl_cnn', 'ctrl_mlp', 'glimpse_mlp'],
                            [ctrl_cnn_nlayers, ctrl_mlp_nlayers,
                             glimpse_mlp_nlayers]):
        for ii in xrange(nlayers):
            for w in ['w', 'b']:
                key = '{}_{}_{}'.format(net, w, ii)
                log.info(key)
                output_list.append(key)
            if net == 'ctrl_cnn':
                for tt in xrange(timespan):
                    for w in ['beta', 'gamma']:
                        key = '{}_{}_{}_{}'.format(net, ii, tt, w)
                        log.info(key)
                        output_list.append(key)

    for net in ['ctrl_lstm']:
        for w in ['w_xi', 'w_hi', 'b_i', 'w_xf', 'w_hf', 'b_f', 'w_xu',
                  'w_hu', 'b_u', 'w_xo', 'w_ho', 'b_o']:
            key = '{}_{}'.format(net, w)
            log.info(key)
            output_list.append(key)

    output_var = []
    for key in output_list:
        output_var.append(model[key])

    output_var_value = sess.run(output_var)

    for key, value in zip(output_list, output_var_value):
        weights[key] = value
        log.info(key)
        log.info(value.shape)

    return weights
コード例 #3
0
def read(folder):
    log.info('Reading pretrained network from {}'.format(folder))
    saver = Saver(folder)
    ckpt_info = saver.get_ckpt_info()
    model_opt = ckpt_info['model_opt']
    ckpt_fname = ckpt_info['ckpt_fname']
    model_id = ckpt_info['model_id']
    model = patch_model.get_model(model_opt)
    attn_cnn_nlayers = len(model_opt['attn_cnn_filter_size'])
    attn_mlp_nlayers = model_opt['num_attn_mlp_layers']
    attn_dcnn_nlayers = len(model_opt['attn_dcnn_filter_size'])
    timespan = model_opt['timespan']
    weights = {}
    sess = tf.Session()
    saver.restore(sess, ckpt_fname)

    output_list = []
    for net, nlayers in zip(
        ['attn_cnn', 'attn_mlp', 'attn_dcnn'],
        [attn_cnn_nlayers, attn_mlp_nlayers, attn_dcnn_nlayers]):
        for ii in xrange(nlayers):
            for w in ['w', 'b']:
                key = '{}_{}_{}'.format(net, w, ii)
                log.info(key)
                output_list.append(key)
            if net == 'attn_cnn' or net == 'attn_dcnn':
                for tt in xrange(timespan):
                    for w in ['beta', 'gamma']:
                        key = '{}_{}_{}_{}'.format(net, ii, tt, w)
                        if key in model:
                            log.info(key)
                            output_list.append(key)

    output_var = []
    for key in output_list:
        output_var.append(model[key])

    output_var_value = sess.run(output_var)

    for key, value in zip(output_list, output_var_value):
        weights[key] = value
        log.info(key)
        log.info(value.shape)

    return weights
コード例 #4
0
def read(folder):
    log.info('Reading foreground segmentation network from {}'.format(folder))
    saver = Saver(folder)
    ckpt_info = saver.get_ckpt_info()
    model_opt = ckpt_info['model_opt']
    ckpt_fname = ckpt_info['ckpt_fname']
    model_id = ckpt_info['model_id']
    model = models.get_model(model_opt)
    cnn_nlayers = len(model_opt['cnn_filter_size'])
    weights = {}
    sess = tf.Session()
    saver.restore(sess, ckpt_fname)
    for ii in xrange(cnn_nlayers):
        w_name = 'cnn_w_{}'.format(ii)
        b_name = 'cnn_b_{}'.format(ii)
        weights[w_name] = sess.run(model[w_name])
        weights[b_name] = sess.run(model[b_name])
        log.info(w_name)
        log.info(weights[w_name].shape)
        log.info(b_name)
        log.info(weights[b_name].shape)

    return weights
コード例 #5
0
ファイル: ris_box.py プロジェクト: lrjconan/img-count
    sess = tf.Session()

    # Create time series loggers
    if train_opt['logs']:
        log_manager = LogManager(logs_folder)
        loggers = get_ts_loggers(model_opt, restore_step=step)
        trainer.register_raw_logs(log_manager, log, model_opt, saver)
        samples = get_plot_loggers(model_opt, train_opt)
        log_url = 'http://{}/deep-dashboard?id={}'.format(
            train_opt['localhost'], model_id)
        log.info('Visualization can be viewed at: {}'.format(log_url))

    # Restore/intialize weights
    if args.restore:
        saver.restore(sess, ckpt_fname)
    else:
        sess.run(tf.initialize_all_variables())

    batch_size = args.batch_size
    log.info('Batch size: {}'.format(batch_size))
    num_ex_train = dataset['train']['input'].shape[0]
    get_batch_train = trainer.get_batch_fn(dataset['train'])
    log.info('Number of training examples: {}'.format(num_ex_train))

    if train_opt['has_valid']:
        num_ex_valid = dataset['valid']['input'].shape[0]
        get_batch_valid = trainer.get_batch_fn(dataset['valid'])
        log.info('Number of validation examples: {}'.format(num_ex_valid))

    def run_samples():
コード例 #6
0
ファイル: ris_box.py プロジェクト: ai3DVision/img-count
    sess = tf.Session()

    # Create time series loggers
    if train_opt['logs']:
        log_manager = LogManager(logs_folder)
        loggers = get_ts_loggers(model_opt, restore_step=step)
        trainer.register_raw_logs(log_manager, log, model_opt, saver)
        samples = get_plot_loggers(model_opt, train_opt)
        log_url = 'http://{}/deep-dashboard?id={}'.format(
            train_opt['localhost'], model_id)
        log.info('Visualization can be viewed at: {}'.format(log_url))

    # Restore/intialize weights
    if args.restore:
        saver.restore(sess, ckpt_fname)
    else:
        sess.run(tf.initialize_all_variables())

    batch_size = args.batch_size
    log.info('Batch size: {}'.format(batch_size))
    num_ex_train = dataset['train']['input'].shape[0]
    get_batch_train = trainer.get_batch_fn(dataset['train'])
    log.info('Number of training examples: {}'.format(num_ex_train))

    if train_opt['has_valid']:
        num_ex_valid = dataset['valid']['input'].shape[0]
        get_batch_valid = trainer.get_batch_fn(dataset['valid'])
        log.info('Number of validation examples: {}'.format(num_ex_valid))

    def run_samples():
コード例 #7
0
class ExperimentBase(object):

  def __init__(self, name, opt, data_opt=None, model_opt=None, seed=1234):
    # Restore previously saved checkpoints.
    self.opt = opt
    self.name = name
    self.new_model_opt = None
    if self.opt['restore']:
      self.restore_options(opt, data_opt)
      if model_opt is not None:
        if 'finetune' in model_opt and model_opt['finetune']:
          self.model_opt['finetune'] = model_opt['finetune']
          self.new_model_opt = model_opt
          self.step.reset()
          self.model_id = self.get_model_id()
          self.exp_folder = os.path.join(self.opt['results'], self.model_id)
          self.saver = Saver(
              self.exp_folder, model_opt=self.model_opt, data_opt=self.data_opt)
      self.exp_folder = opt['restore']
    else:
      if self.opt['model_id']:
        self.model_id = self.opt['model_id']
      else:
        self.model_id = self.get_model_id()
      if model_opt is None or data_opt is None:
        raise Exception('You need to specify model options and data options')
      self.model_opt = model_opt
      self.data_opt = data_opt
      self.step = StepCounter()
      self.exp_folder = os.path.join(self.opt['results'], self.model_id)
      self.saver = Saver(
          self.exp_folder, model_opt=self.model_opt, data_opt=self.data_opt)

    self.init_cmd_logger()

    self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Log arguments
    self.log.log_args()

    # Train loop options
    self.log.info('Building model')
    self.model = self.get_model()

    # Load dataset
    self.log.info('Loading dataset')
    self.dataset_name = self.data_opt['dataset']
    self.dataset = self.get_dataset()

    self.init_model()
    self.init_logs()

  def restore_options(self, opt, data_opt):
    self.saver = Saver(opt['restore'])
    self.ckpt_info = self.saver.get_ckpt_info()
    self.model_opt = self.ckpt_info['model_opt']
    if data_opt is None:
      self.data_opt = self.ckpt_info['data_opt']
    else:
      self.data_opt = data_opt
    self.ckpt_fname = self.ckpt_info['ckpt_fname']
    self.step = StepCounter(self.ckpt_info['step'])
    self.model_id = self.ckpt_info['model_id']
    pass

  def init_model(self):
    # Restore/intialize weights
    if self.opt['restore']:
      self.saver.restore(self.sess, self.ckpt_fname)
    else:
      self.sess.run(tf.global_variables_initializer(),
                    feed_dict={self.model["phase_train"]: True})

  def init_cmd_logger(self):
    self.log = logger.get()

  def init_logs(self):
    pass

  def get_model_id(self):
    return '{}-{}'.format(self.name, get_id())

  @classmethod
  def create_from_main(cls, name, parsers=None, description=None):
    cmd = CmdArgsBase(description)
    opt = None
    if parsers is not None:
      for key in parsers.iterkeys():
        cmd.add_parser(key, parsers[key])
      opt = cmd.get_opt('default')
      if 'data' in parsers:
        data_opt = cmd.get_opt('data')
      else:
        data_opt = None
      if 'model' in parsers:
        model_opt = cmd.get_opt('model')
      else:
        model_opt = None
    return cls(name, opt, data_opt=data_opt, model_opt=model_opt)

  def get_model(self):
    raise NotImplemented()

  def get_dataset(self):
    raise NotImplemented()

  def run(self):
    raise NotImplemented()
コード例 #8
0
def read(folder):
  log.info('Reading pretrained network from {}'.format(folder))
  saver = Saver(folder)
  ckpt_info = saver.get_ckpt_info()
  model_opt = ckpt_info['model_opt']
  ckpt_fname = ckpt_info['ckpt_fname']
  model_id = ckpt_info['model_id']
  model = get_model(model_opt)
  ctrl_cnn_nlayers = len(model_opt['ctrl_cnn_filter_size'])
  ctrl_mlp_nlayers = model_opt['num_ctrl_mlp_layers']
  attn_cnn_nlayers = len(model_opt['attn_cnn_filter_size'])
  attn_dcnn_nlayers = len(model_opt['attn_dcnn_filter_size'])
  timespan = model_opt['timespan']
  glimpse_mlp_nlayers = model_opt['num_glimpse_mlp_layers']
  weights = {}
  with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
    saver.restore(sess, ckpt_fname)
    output_list = []
    for net, nlayers in zip(
        ['ctrl_cnn', 'ctrl_mlp', 'glimpse_mlp', 'score_mlp'],
        [ctrl_cnn_nlayers, ctrl_mlp_nlayers, glimpse_mlp_nlayers, 1]):
      for ii in range(nlayers):
        for w in ['w', 'b']:
          key = '{}_{}_{}'.format(net, w, ii)
          log.info(key)
          output_list.append(key)
        if net == 'ctrl_cnn':
          for tt in range(timespan):
            for w in ['beta', 'gamma']:
              key = '{}_{}_{}_{}'.format(net, ii, tt, w)
              log.info(key)
              output_list.append(key)
    for net in ['ctrl_lstm']:
      wlist = [
          'w_xi', 'w_hi', 'b_i', 'w_xf', 'w_hf', 'b_f', 'w_xu', 'w_hu', 'b_u',
          'w_xo', 'w_ho', 'b_o'
      ]
      for w in wlist:
        key = '{}_{}'.format(net, w)
        log.info(key)
        output_list.append(key)

    net_list = ['attn_cnn', 'attn_dcnn']
    nlayers_list = [attn_cnn_nlayers, attn_dcnn_nlayers]
    for net, nlayers in zip(net_list, nlayers_list):
      for ii in range(nlayers):
        for w in ['w', 'b']:
          key = '{}_{}_{}'.format(net, w, ii)
          log.info(key)
          output_list.append(key)
        if net == 'attn_cnn' or net == 'attn_dcnn':
          for tt in range(timespan):
            for w in ['beta', 'gamma']:
              key = '{}_{}_{}_{}'.format(net, ii, tt, w)
              if key in model:
                log.info(key)
                output_list.append(key)
      output_var = []
      for key in output_list:
        output_var.append(model[key])
      output_var_value = sess.run(output_var)
      for key, value in zip(output_list, output_var_value):
        weights[key] = value
        log.info(key)
        log.info(value.shape)
  return weights