コード例 #1
0
    def imgextract(self):

        raw_dir = osp.join(self.root, 'raw')
        exdir1 = osp.join(raw_dir, datasetname)
        exdir2 = osp.join(raw_dir, flowname)
        fpath1 = osp.join(raw_dir, datasetname + '.tar')
        fpath2 = osp.join(raw_dir, flowname + '.tar')

        if not osp.isdir(exdir1):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar = tarfile.open(fpath1)
            mkdir_if_missing(exdir1)
            os.chdir(exdir1)
            tar.extractall()
            tar.close()
            os.chdir(cwd)

        if not osp.isdir(exdir2):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar = tarfile.open(fpath2)
            mkdir_if_missing(exdir2)
            os.chdir(exdir2)
            tar.extractall()
            tar.close()
            os.chdir(cwd)

            # reorganzing the dataset
            # Format

            temp_images_dir = osp.join(self.root, 'temp_images')
            mkdir_if_missing(temp_images_dir)

            temp_others_dir = osp.join(self.root, 'temp_others')
            mkdir_if_missing(temp_others_dir)

            images_dir = osp.join(self.root, 'images')
            mkdir_if_missing(images_dir)

            others_dir = osp.join(self.root, 'others')
            mkdir_if_missing(others_dir)

            fpaths1 = sorted(glob(osp.join(exdir1, 'i-LIDS-VID/sequences', '*/*/*.png')))
            fpaths2 = sorted(glob(osp.join(exdir2, flowname, '*/*/*.png')))

            identities_imgraw = [[[] for _ in range(2)] for _ in range(319)]
            identities_otherraw = [[[] for _ in range(2)] for _ in range(319)]

            # image information
            for fpath in fpaths1:
                fname = osp.basename(fpath)
                fname_list = fname.split('_')
                cam_name = fname_list[0]
                pid_name = fname_list[1]
                cam = int(cam_name[-1])
                pid = int(pid_name[-3:])
                temp_fname = ('{:08d}_{:02d}_{:04d}.png'
                              .format(pid, cam, len(identities_imgraw[pid - 1][cam - 1])))
                identities_imgraw[pid - 1][cam - 1].append(temp_fname)
                shutil.copy(fpath, osp.join(temp_images_dir, temp_fname))

            identities_temp = [x for x in identities_imgraw if x != [[], []]]
            identities_images = identities_temp

            for pid in range(len(identities_temp)):
                for cam in range(2):
                    for img in range(len(identities_images[pid][cam])):
                        temp_fname = identities_temp[pid][cam][img]
                        fname = ('{:08d}_{:02d}_{:04d}.png'
                                 .format(pid, cam, img))
                        identities_images[pid][cam][img] = fname
                        shutil.copy(osp.join(temp_images_dir, temp_fname), osp.join(images_dir, fname))

            shutil.rmtree(temp_images_dir)

            # flow information

            for fpath in fpaths2:
                fname = osp.basename(fpath)
                fname_list = fname.split('_')
                cam_name = fname_list[0]
                pid_name = fname_list[1]
                cam = int(cam_name[-1])
                pid = int(pid_name[-3:])
                temp_fname = ('{:08d}_{:02d}_{:04d}.png'
                              .format(pid, cam, len(identities_otherraw[pid - 1][cam - 1])))
                identities_otherraw[pid - 1][cam - 1].append(temp_fname)
                shutil.copy(fpath, osp.join(temp_others_dir, temp_fname))

            identities_temp = [x for x in identities_otherraw if x != [[], []]]
            identities_others = identities_temp

            for pid in range(len(identities_temp)):
                for cam in range(2):
                    for img in range(len(identities_others[pid][cam])):
                        temp_fname = identities_temp[pid][cam][img]
                        fname = ('{:08d}_{:02d}_{:04d}.png'
                                 .format(pid, cam, img))
                        identities_others[pid][cam][img] = fname
                        shutil.copy(osp.join(temp_others_dir, temp_fname), osp.join(others_dir, fname))

            shutil.rmtree(temp_others_dir)

            meta = {'name': 'iLIDS-sequence', 'shot': 'sequence', 'num_cameras': 2,
                    'identities': identities_images}

            write_json(meta,  osp.join(self.root, 'meta.json'))

            # Consider fixed training and testing split
            splitmat_name = osp.join(exdir1, 'train-test people splits', 'train_test_splits_ilidsvid.mat')
            data = sio.loadmat(splitmat_name)
            person_list = data['ls_set']
            num = len(identities_images)
            splits = []

            for i in range(10):
                pids = (person_list[i] - 1).tolist()
                trainval_pids = sorted(pids[:num // 2])
                test_pids = sorted(pids[num // 2:])
                split = {'trainval': trainval_pids,
                         'query': test_pids,
                         'gallery': test_pids}
                splits.append(split)
            write_json(splits, osp.join(self.root, 'splits.json'))
コード例 #2
0
ファイル: prid2011sequence.py プロジェクト: zxr8192/GRL
    def imgextract(self):

        raw_dir = osp.join(self.root, 'raw')
        # raw_dir = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw
        exdir1 = osp.join(raw_dir, datasetname)
        # exdir1 = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw/prid_2011
        exdir2 = osp.join(raw_dir, flowname)
        # exdir2 = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw/prid2011flow
        fpath1 = osp.join(raw_dir, datasetname + '.tar')
        # fpath1 = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw/prid_2011.tar
        fpath2 = osp.join(raw_dir, flowname + '.tar')
        # fpath2 = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw/prid2011flow.tar

        if not osp.isdir(exdir1):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar_ref = tarfile.open(fpath1)
            mkdir_if_missing(exdir1)
            os.chdir(exdir1)
            tar_ref.extractall()
            tar_ref.close()
            os.chdir(cwd)

        if not osp.isdir(exdir2):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar_ref = tarfile.open(fpath2)
            mkdir_if_missing(exdir2)
            os.chdir(exdir2)
            tar_ref.extractall()
            tar_ref.close()
            os.chdir(cwd)

        # recognizing the dataset
        # Format
        temp_images_dir = osp.join(self.root, 'temp_images')
        mkdir_if_missing(temp_images_dir)

        temp_others_dir = osp.join(self.root, 'temp_others')
        mkdir_if_missing(temp_others_dir)

        images_dir = osp.join(self.root, 'images')
        mkdir_if_missing(images_dir)
        # images_dir = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/images

        others_dir = osp.join(self.root, 'others')
        mkdir_if_missing(others_dir)
        # others_dir = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/others

        fpaths1 = sorted(
            glob(osp.join(exdir1, 'prid_2011/multi_shot',
                          '*/*/*.png')))  # 存放所有图片的绝对路径
        fpaths2 = sorted(glob(osp.join(exdir2, 'prid2011flow', '*/*/*.png')))

        identities_imgraw = [[[] for _ in range(2)]
                             for _ in range(200)]  # 200个[ []..[] ]
        identities_otherraw = [[[] for _ in range(2)] for _ in range(200)]

        for fpath in fpaths1:
            fname = fpath
            fname_list = fname.split('/')
            cam_name = fname_list[-3]  # cam_a  / cam_b
            pid_name = fname_list[-2]  # person_001
            frame_name = fname_list[-1]  # 0001.png
            cam_id = 1 if cam_name == 'cam_a' else 2  # cam_id = 1 / 2
            pid_id = int(pid_name.split('_')[-1])  # pid_id = 001
            if pid_id > 200:
                continue
            frame_id = int(frame_name.split('.')[-2])  # frame_id = 0001
            temp_fname = ('{:08d}_{:02d}_{:04d}.png'.format(
                pid_id - 1, cam_id - 1, frame_id - 1))
            identities_imgraw[pid_id - 1][cam_id - 1].append(temp_fname)
            shutil.copy(fpath, osp.join(temp_images_dir, temp_fname))

        identities_temp = [x for x in identities_imgraw if x != [[], []]]
        identities_images = identities_temp

        for pid in range(len(identities_temp)):
            for cam in range(2):
                for img in range(len(identities_images[pid][cam])):
                    temp_fname = identities_temp[pid][cam][img]
                    fname = ('{:08d}_{:02d}_{:04d}.png'.format(pid, cam, img))
                    identities_images[pid][cam][img] = fname
                    shutil.copy(osp.join(temp_images_dir, temp_fname),
                                osp.join(images_dir, fname))

        shutil.rmtree(temp_images_dir)

        for fpath in fpaths2:
            fname = fpath
            fname_list = fname.split('/')
            cam_name = fname_list[-3]  # cam_a  / cam_b
            pid_name = fname_list[-2]  # person_001
            frame_name = fname_list[-1]  # 0001.png
            cam_id = 1 if cam_name == 'cam_a' else 2  # cam_id = 1 / 2
            pid_id = int(pid_name.split('_')[-1])  # pid_id = 001
            if pid_id > 200:
                continue
            frame_id = int(frame_name.split('.')[-2])  # frame_id = 0001
            temp_fname = ('{:08d}_{:02d}_{:04d}.png'.format(
                pid_id - 1, cam_id - 1, frame_id - 1))
            identities_otherraw[pid_id - 1][cam_id - 1].append(temp_fname)
            shutil.copy(fpath, osp.join(temp_others_dir, temp_fname))

        identities_temp = [x for x in identities_otherraw if x != [[], []]]
        identities_others = identities_temp

        for pid in range(len(identities_temp)):
            for cam in range(2):
                for img in range(len(identities_others[pid][cam])):
                    temp_fname = identities_temp[pid][cam][img]
                    fname = ('{:08d}_{:02d}_{:04d}.png'.format(pid, cam, img))
                    identities_images[pid][cam][img] = fname
                    shutil.copy(osp.join(temp_others_dir, temp_fname),
                                osp.join(others_dir, fname))

        shutil.rmtree(temp_others_dir)

        meta = {
            'name': 'prid-sequence',
            'shot': 'sequence',
            'num_cameras': 2,
            'identities': identities_images
        }

        write_json(meta, osp.join(self.root, 'meta.json'))
        # Consider fixed training and testing split
        num = len(identities_images)
        splits = []
        for i in range(20):
            pids = np.random.permutation(num)
            pids = (pids - 1).tolist()
            trainval_pids = pids[:num // 2]
            test_pids = pids[num // 2:]
            split = {
                'trainval': trainval_pids,
                'query': test_pids,
                'gallery': test_pids
            }

            splits.append(split)
        write_json(splits, osp.join(self.root, 'splits.json'))
コード例 #3
0
    def imgextract(self):

        raw_dir = osp.join(self.root, 'raw')
        # raw_dir = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw
        exdir1 = osp.join(raw_dir, datasetname)
        # exdir1 = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw/prid_2011
        exdir2 = osp.join(raw_dir, flowname)
        # exdir2 = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw/prid2011flow
        fpath1 = osp.join(raw_dir, datasetname + '.tar')
        # fpath1 = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw/prid_2011.tar
        fpath2 = osp.join(raw_dir, flowname + '.tar')
        # fpath2 = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/raw/prid2011flow.tar

        if not osp.isdir(exdir1):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar_ref = tarfile.open(fpath1)
            mkdir_if_missing(exdir1)
            os.chdir(exdir1)
            tar_ref.extractall()
            tar_ref.close()
            os.chdir(cwd)

        if not osp.isdir(exdir2):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar_ref = tarfile.open(fpath2)
            mkdir_if_missing(exdir2)
            os.chdir(exdir2)
            tar_ref.extractall()
            tar_ref.close()
            os.chdir(cwd)

        # recognizing the dataset
        # Format
        temp_images_dir = osp.join(self.root, 'temp_images')
        mkdir_if_missing(temp_images_dir)

        temp_others_dir = osp.join(self.root, 'temp_others')
        mkdir_if_missing(temp_others_dir)

        images_dir = osp.join(self.root, 'images')
        mkdir_if_missing(images_dir)
        # images_dir = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/images

        others_dir = osp.join(self.root, 'others')
        mkdir_if_missing(others_dir)
        # others_dir = /media/ying/0BDD17830BDD1783/video_reid _prid/data/prid2011sequence/others

        fpaths1 = sorted(glob(osp.join(exdir1, 'prid_2011/multi_shot', '*/*/*.png')))
        fpaths2 = sorted(glob(osp.join(exdir2, 'prid2011flow', '*/*/*.png')))

        identities_imgraw = [[[] for _ in range(2)] for _ in range(200)]
        identities_otherraw = [[[] for _ in range(2)] for _ in range(200)]

        for fpath in fpaths1:
            fname = fpath
            fname_list = fname.split('/')
            cam_name = fname_list[-3]  # cam_a  / cam_b
            pid_name = fname_list[-2]  # person_001
            frame_name = fname_list[-1]  # 0001.png
            cam_id = 1 if cam_name == 'cam_a' else 2  # cam_id = 1 / 2
            pid_id = int(pid_name.split('_')[-1])  # pid_id = 001
            if pid_id > 200:
                continue
            frame_id = int(frame_name.split('.')[-2])  # frame_id = 0001
            temp_fname = ('{:08d}_{:02d}_{:04d}.png'
                          .format(pid_id-1, cam_id-1, frame_id-1))
            identities_imgraw[pid_id - 1][cam_id - 1].append(temp_fname)
            shutil.copy(fpath, osp.join(temp_images_dir, temp_fname))

        identities_temp = [x for x in identities_imgraw if x != [[], []]]
        identities_images = identities_temp

        for pid in range(len(identities_temp)):
            for cam in range(2):
                for img in range(len(identities_images[pid][cam])):
                    temp_fname = identities_temp[pid][cam][img]
                    fname = ('{:08d}_{:02d}_{:04d}.png'.format(pid, cam, img))
                    identities_images[pid][cam][img] = fname
                    shutil.copy(osp.join(temp_images_dir, temp_fname), osp.join(images_dir, fname))

        shutil.rmtree(temp_images_dir)

        for fpath in fpaths2:
            fname = fpath
            fname_list = fname.split('/')
            cam_name = fname_list[-3]  # cam_a  / cam_b
            pid_name = fname_list[-2]  # person_001
            frame_name = fname_list[-1]  # 0001.png
            cam_id = 1 if cam_name == 'cam_a' else 2  # cam_id = 1 / 2
            pid_id = int(pid_name.split('_')[-1])  # pid_id = 001
            if pid_id > 200:
                continue
            frame_id = int(frame_name.split('.')[-2])  # frame_id = 0001
            temp_fname = ('{:08d}_{:02d}_{:04d}.png'
                          .format(pid_id-1, cam_id-1, frame_id-1))
            identities_otherraw[pid_id - 1][cam_id - 1].append(temp_fname)
            shutil.copy(fpath, osp.join(temp_others_dir, temp_fname))

        identities_temp = [x for x in identities_otherraw if x != [[], []]]
        identities_others = identities_temp

        for pid in range(len(identities_temp)):
            for cam in range(2):
                for img in range(len(identities_others[pid][cam])):
                    temp_fname = identities_temp[pid][cam][img]
                    fname = ('{:08d}_{:02d}_{:04d}.png'.format(pid, cam, img))
                    identities_images[pid][cam][img] = fname
                    shutil.copy(osp.join(temp_others_dir, temp_fname), osp.join(others_dir, fname))

        shutil.rmtree(temp_others_dir)

        meta = {'name': 'prid-sequence', 'shot': 'sequence', 'num_cameras': 2,
                'identities': identities_images}

        write_json(meta, osp.join(self.root, 'meta.json'))
        # Consider fixed training and testing split
        num = 200
        splits = []
        for i in range(10):
            pids = np.random.permutation(num)
            pids = (pids - 1).tolist()
            trainval_pids = pids[:num // 2]
            test_pids = pids[num // 2:]
            split = {'trainval': trainval_pids,
                     'query': test_pids,
                     'gallery': test_pids}

            splits.append(split)
        write_json(splits, osp.join(self.root, 'splits.json'))
コード例 #4
0
ファイル: ilidsvidsequence.py プロジェクト: tanbo1/video_reid
    def imgextract(self):

        raw_dir = osp.join(self.root, 'raw')
        exdir1 = osp.join(raw_dir, datasetname)
        exdir2 = osp.join(raw_dir, flowname)
        fpath1 = osp.join(raw_dir, datasetname + '.tar')
        fpath2 = osp.join(raw_dir, flowname + '.tar')

        if not osp.isdir(exdir1):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar = tarfile.open(fpath1)
            mkdir_if_missing(exdir1)
            os.chdir(exdir1)
            tar.extractall()
            tar.close()
            os.chdir(cwd)

        if not osp.isdir(exdir2):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar = tarfile.open(fpath2)
            mkdir_if_missing(exdir2)
            os.chdir(exdir2)
            tar.extractall()
            tar.close()
            os.chdir(cwd)

            # reorganzing the dataset
            # Format

            temp_images_dir = osp.join(self.root, 'temp_images')
            mkdir_if_missing(temp_images_dir)

            temp_others_dir = osp.join(self.root, 'temp_others')
            mkdir_if_missing(temp_others_dir)

            images_dir = osp.join(self.root, 'images')
            mkdir_if_missing(images_dir)

            others_dir = osp.join(self.root, 'others')
            mkdir_if_missing(others_dir)

            fpaths1 = sorted(
                glob(osp.join(exdir1, 'i-LIDS-VID/sequences', '*/*/*.png')))
            fpaths2 = sorted(glob(osp.join(exdir2, flowname, '*/*/*.png')))

            identities_imgraw = [[[] for _ in range(2)] for _ in range(319)]
            identities_otherraw = [[[] for _ in range(2)] for _ in range(319)]

            # image information
            for fpath in fpaths1:
                fname = osp.basename(fpath)
                fname_list = fname.split('_')
                cam_name = fname_list[0]
                pid_name = fname_list[1]
                cam = int(cam_name[-1])
                pid = int(pid_name[-3:])
                temp_fname = ('{:08d}_{:02d}_{:04d}.png'.format(
                    pid, cam, len(identities_imgraw[pid - 1][cam - 1])))
                identities_imgraw[pid - 1][cam - 1].append(temp_fname)
                shutil.copy(fpath, osp.join(temp_images_dir, temp_fname))

            identities_temp = [x for x in identities_imgraw if x != [[], []]]
            identities_images = identities_temp

            for pid in range(len(identities_temp)):
                for cam in range(2):
                    for img in range(len(identities_images[pid][cam])):
                        temp_fname = identities_temp[pid][cam][img]
                        fname = ('{:08d}_{:02d}_{:04d}.png'.format(
                            pid, cam, img))
                        identities_images[pid][cam][img] = fname
                        shutil.copy(osp.join(temp_images_dir, temp_fname),
                                    osp.join(images_dir, fname))

            shutil.rmtree(temp_images_dir)

            # flow information

            for fpath in fpaths2:
                fname = osp.basename(fpath)
                fname_list = fname.split('_')
                cam_name = fname_list[0]
                pid_name = fname_list[1]
                cam = int(cam_name[-1])
                pid = int(pid_name[-3:])
                temp_fname = ('{:08d}_{:02d}_{:04d}.png'.format(
                    pid, cam, len(identities_otherraw[pid - 1][cam - 1])))
                identities_otherraw[pid - 1][cam - 1].append(temp_fname)
                shutil.copy(fpath, osp.join(temp_others_dir, temp_fname))

            identities_temp = [x for x in identities_otherraw if x != [[], []]]
            identities_others = identities_temp

            for pid in range(len(identities_temp)):
                for cam in range(2):
                    for img in range(len(identities_others[pid][cam])):
                        temp_fname = identities_temp[pid][cam][img]
                        fname = ('{:08d}_{:02d}_{:04d}.png'.format(
                            pid, cam, img))
                        identities_others[pid][cam][img] = fname
                        shutil.copy(osp.join(temp_others_dir, temp_fname),
                                    osp.join(others_dir, fname))

            shutil.rmtree(temp_others_dir)

            meta = {
                'name': 'iLIDS-sequence',
                'shot': 'sequence',
                'num_cameras': 2,
                'identities': identities_images
            }

            write_json(meta, osp.join(self.root, 'meta.json'))

            # Consider fixed training and testing split
            splitmat_name = osp.join(exdir1, 'train-test people splits',
                                     'train_test_splits_ilidsvid.mat')
            data = sio.loadmat(splitmat_name)
            person_list = data['ls_set']
            num = len(identities_images)
            splits = []

            for i in range(10):
                pids = (person_list[i] - 1).tolist()
                trainval_pids = sorted(pids[:num // 2])
                test_pids = sorted(pids[num // 2:])
                split = {
                    'trainval': trainval_pids,
                    'query': test_pids,
                    'gallery': test_pids
                }
                splits.append(split)
            write_json(splits, osp.join(self.root, 'splits.json'))
コード例 #5
0
ファイル: prid2011sequence.py プロジェクト: tanbo1/video_reid
    def imgextract(self):

        raw_dir = osp.join(self.root, 'raw')
        exdir1 = osp.join(raw_dir, datasetname)
        exdir2 = osp.join(raw_dir, flowname)
        fpath1 = osp.join(raw_dir, datasetname + '.zip')
        fpath2 = osp.join(raw_dir, flowname + '.tar')

        if not osp.isdir(exdir1):
            print("Extracting tar file")
            cwd = os.getcwd()
            zip_ref = zipfile.ZipFile(fpath1, 'r')
            mkdir_if_missing(exdir1)
            zip_ref.extractall(exdir1)
            zip_ref.close()
            os.chdir(cwd)

        if not osp.isdir(exdir2):
            print("Extracting tar file")
            cwd = os.getcwd()
            tar_ref = tarfile.open(fpath2)
            mkdir_if_missing(exdir2)
            os.chdir(exdir2)
            tar_ref.extractall()
            tar_ref.close()
            os.chdir(cwd)

        ## recognizing the dataset
        # Format

        images_dir = osp.join(self.root, 'images')
        mkdir_if_missing(images_dir)

        others_dir = osp.join(self.root, 'others')
        mkdir_if_missing(others_dir)

        fpaths1 = sorted(glob(osp.join(exdir1, 'multi_shot', '*/*/*.png')))
        fpaths2 = sorted(glob(osp.join(exdir2, '*/*.png')))

        identities_images = [[[] for _ in range(2)] for _ in range(200)]

        for fpath in fpaths1:
            fname = fpath
            fname_list = fname.split('/')
            cam_name = fname_list[-3]
            pid_name = fname_list[-2]
            frame_name = fname_list[-1]
            cam_id = 1 if cam_name =='cam_a' else 2
            pid_id = int(pid_name.split('_')[-1])
            if pid_id > 200:
                continue
            frame_id = int(frame_name.split('.')[-2])
            imagefname = ('{:08d}_{:02d}_{:04d}.png'
                          .format(pid_id-1, cam_id-1, frame_id-1))
            identities_images[pid_id - 1][cam_id - 1].append(imagefname)
            shutil.copy(fpath, osp.join(images_dir, imagefname))

        for fpath in fpaths2:
            fname = fpath
            fname_list = fname.split('/')
            fname_img = fname_list[-1]
            shutil.copy(fname, osp.join(others_dir, fname_img))




        meta = {'name': 'iLIDS-sequence', 'shot': 'sequence', 'num_cameras': 2,
                'identities': identities_images}

        write_json(meta, osp.join(self.root, 'meta.json'))
        # Consider fixed training and testing split
        num = 200
        splits = []
        for i in range(10):
            pids = np.random.permutation(num)
            pids = (pids -1).tolist()
            trainval_pids = pids[:num // 2]
            test_pids = pids[num // 2:]
            split = {'trainval': trainval_pids,
                     'query': test_pids,
                     'gallery': test_pids}

            splits.append(split)
        write_json(splits, osp.join(self.root, 'splits.json'))
コード例 #6
0
    def _process_dir_dense(self,
                           dir_path,
                           json_path,
                           relabel,
                           sampling_step=32):
        if osp.exists(json_path):
            print("=> {} generated before, awesome!".format(json_path))
            split = read_json(json_path)
            return split['tracklets'], split['num_tracklets'], split[
                'num_pids'], split['num_imgs_per_tracklet']

        print(
            "=> Automatically generating split (might take a while for the first time, have a coffe)"
        )
        pdirs = glob.glob(osp.join(dir_path, '*'))  # avoid .DS_Store
        print("Processing {} with {} person identities".format(
            dir_path, len(pdirs)))

        pid_container = set()
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            pid_container.add(pid)
        pid2label = {pid: label for label, pid in enumerate(pid_container)}

        tracklets = []
        num_imgs_per_tracklet = []
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            if relabel: pid = pid2label[pid]
            tdirs = glob.glob(osp.join(pdir, '*'))
            for tdir in tdirs:
                raw_img_paths = glob.glob(osp.join(tdir, '*.jpg'))
                num_imgs = len(raw_img_paths)

                if num_imgs < self.min_seq_len:
                    continue

                num_imgs_per_tracklet.append(num_imgs)
                img_paths = []
                for img_idx in range(num_imgs):
                    # some tracklet starts from 0002 instead of 0001
                    img_idx_name = 'F' + str(img_idx + 1).zfill(4)
                    res = glob.glob(
                        osp.join(tdir, '*' + img_idx_name + '*.jpg'))
                    if len(res) == 0:
                        print(
                            "Warn: index name {} in {} is missing, jump to next"
                            .format(img_idx_name, tdir))
                        continue
                    img_paths.append(res[0])
                img_name = osp.basename(img_paths[0])
                if img_name.find('_') == -1:
                    # old naming format: 0001C6F0099X30823.jpg
                    camid = int(img_name[5]) - 1
                else:
                    # new naming format: 0001_C6_F0099_X30823.jpg
                    camid = int(img_name[6]) - 1
                img_paths = tuple(img_paths)

                # dense sampling
                num_sampling = len(img_paths) // sampling_step
                if num_sampling == 0:
                    tracklets.append((img_paths, pid, camid))
                else:
                    for idx in range(num_sampling):
                        if idx == num_sampling - 1:
                            tracklets.append(
                                (img_paths[idx * sampling_step:], pid, camid))
                        else:
                            tracklets.append(
                                (img_paths[idx * sampling_step:(idx + 1) *
                                           sampling_step], pid, camid))

        num_pids = len(pid_container)
        num_tracklets = len(tracklets)

        print("Saving split to {}".format(json_path))
        split_dict = {
            'tracklets': tracklets,
            'num_tracklets': num_tracklets,
            'num_pids': num_pids,
            'num_imgs_per_tracklet': num_imgs_per_tracklet,
        }
        write_json(split_dict, json_path)

        return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet
コード例 #7
0
    def _process_dir(self, dir_path, json_path, relabel):
        if osp.exists(json_path):
            print("=> {} generated before, awesome!".format(json_path))
            split = read_json(json_path)
            return split['tracklets'], split['num_tracklets'], split[
                'num_pids'], split['num_imgs_per_tracklet']

        print(
            "=> Automatically generating split (might take a while for the first time, have a coffe)"
        )
        pdirs = glob.glob(osp.join(dir_path,
                                   '*'))  # avoid .DS_Store  得到数据集中的所有文件夹
        print("Processing {} with {} person identities".format(
            dir_path, len(pdirs)))

        pid_container = set()  # 得到文件夹的名字,即行人的id,集合的形式,一共有702个文件夹,即702个行人id
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            pid_container.add(pid)
        pid2label = {pid: label
                     for label, pid in enumerate(pid_container)}  # relabel。。

        tracklets = []
        num_imgs_per_tracklet = []  # 存放每个tracklet的图片数目的列表
        for pdir in pdirs:  # 遍历每个子文件夹,得到其中的图片,即每个id对应的视频图片集
            pid = int(osp.basename(pdir))  # pid=817.。
            if relabel: pid = pid2label[pid]  # relabel。。
            tdirs = glob.glob(osp.join(pdir,
                                       '*'))  # 得到文件夹中的所有tracklets,一个id有多个视频序列
            for tdir in tdirs:
                raw_img_paths = glob.glob(osp.join(
                    tdir, '*.jpg'))  # 得到每个tracklet中图片的绝对路径,乱序
                num_imgs = len(raw_img_paths)  # 162 tracklet的长度=图片的数目

                if num_imgs < self.min_seq_len:
                    continue

                num_imgs_per_tracklet.append(num_imgs)
                img_paths = []
                for img_idx in range(
                        num_imgs):  # 在这里,将每个tracklet中图片的乱序索引,进行排序。
                    # some tracklet starts from 0002 instead of 0001
                    img_idx_name = 'F' + str(img_idx + 1).zfill(4)  # F0001
                    res = glob.glob(
                        osp.join(tdir, '*' + img_idx_name +
                                 '*.jpg'))  # 找到对应img索引的图片的绝对路径
                    if len(res) == 0:  # 有些帧的索引可能不存在,这时需要跳过
                        print(
                            "Warn: index name {} in {} is missing, jump to next"
                            .format(img_idx_name, tdir))
                        continue
                    img_paths.append(res[0])
                img_name = osp.basename(
                    img_paths[0])  # 图片的格式:'0817_C1_F0001_X207382.jpg'
                if img_name.find('_') == -1:
                    # old naming format: 0001C6F0099X30823.jpg
                    camid = int(img_name[5]) - 1
                else:
                    # new naming format: 0001_C6_F0099_X30823.jpg
                    camid = int(img_name[6]) - 1
                img_paths = tuple(img_paths)
                tracklets.append(
                    (img_paths, pid,
                     camid))  # 得到每个tracklet的所有图片的绝对路径,行人id,camid =》 和Mars数据集类似

        num_pids = len(pid_container)  # 训练集中的id数目
        num_tracklets = len(tracklets)

        print("Saving split to {}".format(json_path))
        split_dict = {
            'tracklets': tracklets,
            'num_tracklets': num_tracklets,
            'num_pids': num_pids,
            'num_imgs_per_tracklet': num_imgs_per_tracklet,
        }
        write_json(split_dict, json_path)

        return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet
コード例 #8
0
ファイル: mars.py プロジェクト: zxr8192/GRL
    def _process_gallery_data(self,
                              names,
                              meta_data,
                              home_dir=None,
                              relabel=False,
                              min_seq_len=0,
                              json_path=''):
        if osp.exists(json_path):
            print("=> {} generated before, awesome!".format(json_path))
            split = read_json(json_path)
            return split['tracklets'], split['num_tracklets'], split[
                'num_pids'], split['num_imgs_per_tracklet'], split[
                    'pids'], split['camid']

        assert home_dir in ['bbox_train', 'bbox_test']
        num_tracklets = meta_data.shape[0]  # 8298  TODO: 要不要增加?
        pid_list = list(set(
            meta_data[:, 2].tolist()))  # pid = 625 => [1 3 5 7 9...]
        num_pids = len(pid_list)  # 626  622

        if relabel:
            pid2label = {pid: label
                         for label, pid in enumerate(pid_list)
                         }  # {1:0,3:1,5:2,...}
        tracklets = []
        num_imgs_per_tracklet = []
        gallery_pid = []
        gallery_camid = []

        for tracklet_idx in range(num_tracklets):
            data = meta_data[tracklet_idx, ...]  # [1 16 1 1]
            start_index, end_index, pid, camid = data

            if pid == -1:
                continue  # junk images are just ignored
            assert 1 <= camid <= 6
            if relabel:
                pid = pid2label[pid]  # pid = 0
            camid -= 1
            # index starts from 0
            img_names = names[start_index - 1:end_index]
            # <class 'list'>:['0001C1T0001F001.jpg'.. '0001C1T0001F016.jpg']

            # make sure image names correspond to the same person
            pnames = [img_name[:4]
                      for img_name in img_names]  # pnames = ['0001','0001'...]
            assert len(
                set(pnames)
            ) == 1, "Error: a single tracklet contains different person images"

            # make sure all images are captured under the same camera
            camnames = [img_name[5]
                        for img_name in img_names]  # camnames = ['1','1'...]
            assert len(
                set(camnames)
            ) == 1, "Error: images are captured under different cameras!"

            # append image names with directory information
            # '/media/ying/0BDD17830BDD1783/ReIdDataset/Mars/bbox_train/0001/0001C1T0001F001.jpg'
            img_paths = [
                osp.join(self.root, home_dir, img_name[:4], img_name)
                for img_name in img_names
            ]  # list<16>
            if len(img_paths) >= min_seq_len:
                img_paths = tuple(img_paths)
                tracklets.append(
                    (img_paths, int(pid), int(camid)
                     ))  # (('.jpg','.jpg','每张图片的路径'), 0'行人id', 0'camid' )
                num_imgs_per_tracklet.append(
                    len(img_paths))  # [16,79,15...'每个小段视频包含的图片帧数目']
            gallery_pid.append(int(pid))
            gallery_camid.append(int(camid))
        num_tracklets = len(tracklets)  # 8298
        print("Saving split to {}".format(json_path))
        split_dict = {
            'tracklets': tracklets,
            'num_tracklets': num_tracklets,
            'num_pids': num_pids,
            'num_imgs_per_tracklet': num_imgs_per_tracklet,
            'pids': gallery_pid,
            'camid': gallery_camid,
        }
        write_json(split_dict, json_path)
        return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet, gallery_pid, gallery_camid