class FeatExtractorBlstm_p1_Runner(): def __init__(self, cfg): self.device = torch.device( 'cuda:0' if torch.cuda.is_available() else 'cpu') self.dtype = torch.float32 self.eps = 1e-8 self.stft_module = STFTModule(cfg['stft_params'], self.device) self.stft_module_ex1 = STFTModule(cfg['stft_params_ex1'], self.device) self.train_data_num = cfg['train_data_num'] self.valid_data_num = cfg['valid_data_num'] self.sample_len = cfg['sample_len'] self.epoch_num = cfg['epoch_num'] self.train_batch_size = cfg['train_batch_size'] self.valid_batch_size = cfg['valid_batch_size'] self.train_full_data_num = cfg['train_full_data_num'] self.valid_full_data_num = cfg['valid_full_data_num'] self.save_path = cfg['save_path'] self.train_dataset = VoicebankDemandDataset( data_num=self.train_data_num, full_data_num=self.train_full_data_num, sample_len=self.sample_len, folder_type='train', shuffle=True, device=self.device, augmentation=True) self.valid_dataset = VoicebankDemandDataset( data_num=self.valid_data_num, full_data_num=self.valid_full_data_num, sample_len=self.sample_len, folder_type='validation', shuffle=True, device=self.device, augmentation=False) self.train_data_loader = FastDataLoader( self.train_dataset, batch_size=self.train_batch_size, shuffle=True) self.valid_data_loader = FastDataLoader( self.valid_dataset, batch_size=self.valid_batch_size, shuffle=True) self.model = CNNOpenUnmix_p1(cfg['dnn_cfg']).to(self.device) self.criterion = Clip_SDR() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-3) self.early_stopping = EarlyStopping(patience=10) def _preprocess(self, noisy, clean): with torch.no_grad(): noisy_spec = self.stft_module.stft(noisy, pad=False) noisy_amp_spec = taF.complex_norm(noisy_spec) noisy_mag_spec = self.stft_module.to_normalize_mag(noisy_amp_spec) clean_spec = self.stft_module.stft(clean, pad=False) clean_amp_spec = taF.complex_norm(clean_spec) #ex1 ex1_noisy_spec = self.stft_module_ex1.stft(noisy, pad=False) ex1_noisy_amp_spec = taF.complex_norm(ex1_noisy_spec) ex1_noisy_mag_spec = self.stft_module_ex1.to_normalize_mag( ex1_noisy_amp_spec) return noisy_mag_spec, ex1_noisy_mag_spec, clean_amp_spec, noisy_amp_spec, noisy_spec, clean_spec def _run(self, mode=None, data_loader=None): running_loss = 0 for i, (noisy, clean) in enumerate(data_loader): noisy = noisy.to(self.dtype).to(self.device) clean = clean.to(self.dtype).to(self.device) noisy_mag_spec, ex1_noisy_mag_spec, clean_amp_spec, noisy_amp_spec, noisy_spec, clean_spec = self._preprocess( noisy, clean) self.model.zero_grad() est_mask = self.model(noisy_mag_spec, ex1_noisy_mag_spec) est_source = noisy_spec * est_mask[..., None] if mode == 'train' or mode == 'validation': loss = self.criterion(est_source, clean_spec, self.stft_module) running_loss += loss.data if mode == 'train': loss.backward() self.optimizer.step() return (running_loss / (i + 1)), est_source, est_mask, noisy_amp_spec, clean_amp_spec def train(self): train_loss = np.array([]) valid_loss = np.array([]) print("start train") for epoch in range(self.epoch_num): # train print('epoch{0}'.format(epoch)) start = time.time() self.model.train() tmp_train_loss, _, _, _, _ = self._run( mode='train', data_loader=self.train_data_loader) train_loss = np.append(train_loss, tmp_train_loss.cpu().clone().numpy()) self.model.eval() with torch.no_grad(): tmp_valid_loss, est_source, est_mask, noisy_amp_spec, clean_amp_spec = self._run( mode='validation', data_loader=self.valid_data_loader) valid_loss = np.append(valid_loss, tmp_valid_loss.cpu().clone().numpy()) if (epoch + 1) % 10 == 0: plot_time = time.time() est_source = taF.complex_norm(est_source) show_TF_domein_result(train_loss, valid_loss, noisy_amp_spec[0, :, :], est_mask[0, :, :], est_source[0, :, :], clean_amp_spec[0, :, :]) print('plot_time:', time.time() - plot_time) torch.save(self.model.state_dict(), self.save_path + 'u_net{0}.ckpt'.format(epoch + 1)) end = time.time() print('----excute time: {0}'.format(end - start))
class DemandCNNOpenUnmix_p2_Tester(): def __init__(self, cfg): self.device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu') self.dtype = torch.float32 self.eps = 1e-4 self.eval_path = cfg['eval_path'] self.model = CNNOpenUnmix_p2(cfg['dnn_cfg']).to(self.device) self.model.eval() self.model.load_state_dict( torch.load(self.eval_path, map_location=self.device)) self.stft_module = STFTModule(cfg['stft_params'], self.device) self.stft_module_ex2 = STFTModule(cfg['stft_params_ex2'], self.device) self.test_data_num = cfg['test_data_num'] self.test_batch_size = cfg['test_batch_size'] self.sample_len = cfg['sample_len'] self.test_dataset = VoicebankDemandDataset(data_num=self.test_data_num, sample_len=self.sample_len, folder_type='test', shuffle=False) self.test_data_loader = FastDataLoader(self.test_dataset, batch_size=self.test_batch_size, shuffle=False) self.stoi_list = np.array([]) self.pesq_list = np.array([]) self.si_sdr_list = np.array([]) self.si_sdr_improve_list = np.array([]) def _preprocess(self, noisy): with torch.no_grad(): noisy_spec = self.stft_module.stft(noisy, pad=False) noisy_amp_spec = taF.complex_norm(noisy_spec) noisy_mag_spec = self.stft_module.to_normalize_mag(noisy_amp_spec) #ex2 ex2_noisy_spec = self.stft_module_ex2.stft(noisy, pad=False) ex2_noisy_amp_spec = taF.complex_norm(ex2_noisy_spec) ex2_noisy_mag_spec = self.stft_module_ex2.to_normalize_mag( ex2_noisy_amp_spec) return noisy_mag_spec, ex2_noisy_mag_spec, noisy_spec def test(self, mode='test'): with torch.no_grad(): for i, (noisy, clean) in enumerate(self.test_data_loader): start = time.time() noisy = noisy.to(self.dtype).to(self.device) clean = clean.to(self.dtype).to(self.device) siglen = noisy.shape[1] noisy_mag_spec, ex2_noisy_mag_spec, noisy_spec = self._preprocess( noisy) est_mask = self.model(noisy_mag_spec, ex2_noisy_mag_spec) est_source = noisy_spec * est_mask[..., None] est_wave = self.stft_module.istft(est_source, siglen) print(est_wave.shape) est_wave = est_wave.squeeze(0) clean = clean.squeeze(0) noisy = noisy.squeeze(0) pesq_val, stoi_val, si_sdr_val, si_sdr_improve = sp_enhance_evals( est_wave, clean, noisy, fs=16000) self.pesq_list = np.append(self.pesq_list, pesq_val) self.stoi_list = np.append(self.stoi_list, stoi_val) self.si_sdr_list = np.append(self.si_sdr_list, si_sdr_val) self.si_sdr_improve_list = np.append(self.si_sdr_improve_list, si_sdr_improve) print('test time:', time.time() - start) print('pesq mean:', np.mean(self.pesq_list)) print('stoi mean:', np.mean(self.stoi_list)) print('sdr mean:', np.mean(self.si_sdr_list)) print('sdr improve mena:', np.mean(self.si_sdr_improve_list))
class UNetRunner(): def __init__(self, cfg): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.dtype= torch.float32 self.eps = 1e-4 self.stft_module = STFTModule(cfg['stft_params']) self.inst_num = cfg['inst_num'] self.train_data_num = cfg['train_data_num'] self.valid_data_num = cfg['valid_data_num'] self.sample_len = cfg['sample_len'] self.epoch_num = cfg['epoch_num'] self.train_batch_size = cfg['train_batch_size'] self.valid_batch_size = cfg['valid_batch_size'] self.train_dataset = SlakhDataset(inst_num=self.inst_num, data_num=self.train_data_num, sample_len=self.sample_len, folder_type='train') self.valid_dataset = SlakhDataset(inst_num=self.inst_num, data_num=self.valid_data_num, sample_len=self.sample_len, folder_type='validation') self.train_data_loader = torch.utils.data.DataLoader(self.train_dataset, batch_size=self.train_batch_size, shuffle=True) self.valid_data_loader = torch.utils.data.DataLoader(self.valid_dataset, batch_size=self.valid_batch_size, shuffle=True) self.model = UNet().to(self.device) self.criterion = MSE() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-3) self.save_path = 'results/model/inst_num_{0}/'.format(self.inst_num) def _preprocess(self, mixture, true_sources): mix_spec = self.stft_module.stft(mixture, pad=True) mix_phase = mix_spec[:,:,1] mix_amp_spec = taF.complex_norm(mix_spec) mix_amp_spec = mix_amp_spec[:,1:,:] mix_mag_spec = torch.log10(mix_amp_spec + self.eps) mix_mag_spec = mix_mag_spec[:,1:,:] true_sources_spec = self.stft_module.stft_3D(true_sources, pad=True) true_sources_amp_spec = taF.complex_norm(true_sources_spec) true_sources_amp_spec = true_sources_amp_spec[:,:,1:,:] true_res = mixture.unsqueeze(1).repeat(1, self.inst_num, 1) - true_sources true_res_spec = self.stft_module.stft_3D(true_res, pad=True) true_res_amp_spec = taF.complex_norm(true_res_spec) return mix_mag_spec, true_sources_amp_spec, true_res_amp_spec, mix_phase, mix_amp_spec def _postporcess(self, est_sources): pass def _run(self, model, criterion, data_loader, batch_size, mode=None): running_loss = 0 for i, (mixture, sources, _) in enumerate(data_loader): mixture = mixture.to(self.dtype).to(self.device) sources = sources.to(self.dtype).to(self.device) mix_mag_spec, true_sources_amp_spec, true_res_amp_spec, _, mix_amp_spec = self._preprocess(mixture, sources) model.zero_grad() est_mask = model(mix_mag_spec.unsqueeze(1)) est_sources = mix_amp_spec.unsqueeze(1) * est_mask if mode == 'train' or mode == 'validation': loss = 10 * criterion(est_sources, true_sources_amp_spec, self.inst_num) running_loss += loss.data if mode == 'train': loss.backward() self.optimizer.step() return (running_loss / (i+1)), est_sources, est_mask, mix_amp_spec def train(self): train_loss = np.array([]) valid_loss = np.array([]) print("start train") for epoch in range(self.epoch_num): # train print('epoch{0}'.format(epoch)) start = time.time() self.model.train() tmp_train_loss, _, _, _ = self._run(self.model, self.criterion, self.train_data_loader, self.train_batch_size, mode='train') train_loss = np.append(train_loss, tmp_train_loss.cpu().clone().numpy()) # validation self.model.eval() with torch.no_grad(): tmp_valid_loss, est_source, est_mask, mix_amp_spec = self._run(self.model, self.criterion, self.valid_data_loader, self.valid_batch_size, mode='validation') valid_loss = np.append(valid_loss, tmp_valid_loss.cpu().clone().numpy()) if (epoch + 1) % 10 == 0: torch.save(self.model.state_dict(), self.save_path + 'u_net{0}.ckpt'.format(epoch + 1)) end = time.time() print('----excute time: {0}'.format(end - start)) show_TF_domein_result(valid_loss, mix_amp_spec[0,:,:], est_mask[0,0,:,:], est_source[0,0,:,:])
class DSDOpenUnmixTester(): def __init__(self, cfg): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.dtype= torch.float32 self.eps = 1e-4 self.eval_path = cfg['eval_path'] self.model = OpenUnmix(cfg['dnn_cfg']).to(self.device) self.model.eval() self.model.load_state_dict(torch.load(self.eval_path, map_location=self.device)) self.stft_module = STFTModule(cfg['stft_params'], self.device) self.test_data_num = cfg['test_data_num'] self.test_batch_size = cfg['test_batch_size'] self.sample_len = cfg['sample_len'] self.test_dataset = DSD100Dataset(data_num=self.test_data_num, sample_len=self.sample_len, folder_type='Test', shuffle=False, device=self.device, augmentation=False) self.test_data_loader = FastDataLoader(self.test_dataset, batch_size=self.test_batch_size, shuffle=False) self.sdr_list = np.array([]) self.sir_list = np.array([]) self.sar_list = np.array([]) self.si_sdr_list = np.array([]) self.si_sdr_improve_list = np.array([]) def _preprocess(self, noisy): with torch.no_grad(): noisy_spec = self.stft_module.stft(noisy, pad=None) noisy_amp_spec = taF.complex_norm(noisy_spec) noisy_mag_spec = self.stft_module.to_normalize_mag(noisy_amp_spec) return noisy_mag_spec, noisy_spec def test(self, mode='test'): with torch.no_grad(): for i, (noisy, _, _, _, clean) in enumerate(self.test_data_loader): start = time.time() noisy = noisy.to(self.dtype).to(self.device) clean = clean.to(self.dtype).to(self.device) siglen = noisy.shape[1] noisy_mag_spec, noisy_spec = self._preprocess(noisy) est_mask = self.model(noisy_mag_spec) est_source = noisy_spec * est_mask[...,None] est_wave = self.stft_module.istft(est_source, siglen) print(est_wave.shape) est_wave = est_wave.squeeze(0) clean = clean.squeeze(0) noisy = noisy.squeeze(0) sdr, sir, sar, si_sdr, si_sdr_improve = mss_evals(est_wave, clean, noisy) self.sdr_list = np.append(self.sdr_list, sdr) self.sir_list = np.append(self.sir_list, sir) self.sar_list = np.append(self.sar_list, sar) self.si_sdr_list = np.append(self.si_sdr_list, si_sdr) self.si_sdr_improve_list = np.append(self.si_sdr_improve_list, si_sdr_improve) print('test time:', time.time() - start) print('sdr mean:', np.mean(self.sdr_list)) print('sir mean:', np.mean(self.sir_list)) print('sar mean:', np.mean(self.sar_list)) print('si-sdr mean:', np.mean(self.si_sdr_list)) print('sdr improve mean:', np.mean(self.si_sdr_improve_list))
class UNetRunner(): def __init__(self, cfg): self.device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu') self.dtype = torch.float32 self.eps = 1e-4 self.stft_module = STFTModule(cfg['stft_params'], self.device) self.train_data_num = cfg['train_data_num'] self.valid_data_num = cfg['valid_data_num'] self.sample_len = cfg['sample_len'] self.epoch_num = cfg['epoch_num'] self.train_batch_size = cfg['train_batch_size'] self.valid_batch_size = cfg['valid_batch_size'] self.train_dataset = DSD100Dataset(data_num=self.train_data_num, sample_len=self.sample_len, folder_type='train') self.valid_dataset = DSD100Dataset(data_num=self.valid_data_num, sample_len=self.sample_len, folder_type='validation') self.train_data_loader = FastDataLoader( self.train_dataset, batch_size=self.train_batch_size, shuffle=True) self.valid_data_loader = FastDataLoader( self.valid_dataset, batch_size=self.valid_batch_size, shuffle=True) self.model = UNet().to(self.device) self.criterion = MSE() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-3) self.save_path = 'results/model/dsd_unet_config_1/' def _preprocess(self, mixture, true): with torch.no_grad(): mix_spec = self.stft_module.stft(mixture, pad=True) mix_amp_spec = taF.complex_norm(mix_spec) mix_amp_spec = mix_amp_spec[:, 1:, :] mix_mag_spec = torch.log10(mix_amp_spec + self.eps) true_spec = self.stft_module.stft(true, pad=True) true_amp_spec = taF.complex_norm(true_spec) true_amp_spec = true_amp_spec[:, 1:, :] return mix_mag_spec, true_amp_spec, mix_amp_spec def _postporcess(self, est_sources): pass def _run(self, mode=None, data_loader=None): running_loss = 0 for i, (mixture, _, _, _, vocals) in enumerate(data_loader): mixture = mixture.to(self.dtype).to(self.device) true = vocals.to(self.dtype).to(self.device) mix_mag_spec, true_amp_spec, mix_amp_spec = self._preprocess( mixture, true) self.model.zero_grad() est_mask = self.model(mix_mag_spec.unsqueeze(1)) est_source = mix_amp_spec.unsqueeze(1) * est_mask if mode == 'train' or mode == 'validation': loss = 10 * self.criterion(est_source, true_amp_spec) running_loss += loss.data if mode == 'train': loss.backward() self.optimizer.step() return (running_loss / (i + 1)), est_source, est_mask, mix_amp_spec, true_amp_spec def train(self): train_loss = np.array([]) print("start train") for epoch in range(self.epoch_num): # train print('epoch{0}'.format(epoch)) start = time.time() self.model.train() tmp_train_loss, est_source, est_mask, mix_amp_spec, true_amp_spec = self._run( mode='train', data_loader=self.train_data_loader) train_loss = np.append(train_loss, tmp_train_loss.cpu().clone().numpy()) if (epoch + 1) % 10 == 0: plot_time = time.time() show_TF_domein_result(train_loss, mix_amp_spec[0, :, :], est_mask[0, 0, :, :], est_source[0, 0, :, :], true_amp_spec[0, :, :]) print('plot_time:', time.time() - plot_time) torch.save(self.model.state_dict(), self.save_path + 'u_net{0}.ckpt'.format(epoch + 1)) end = time.time() print('----excute time: {0}'.format(end - start))
class UNet_pp_Tester(): def __init__(self, cfg): self.device = torch.device( 'cuda:0' if torch.cuda.is_available() else 'cpu') self.dtype = torch.float32 self.eps = 1e-4 self.eval_path = cfg['eval_path'] self.model = UNet_pp().to(self.device) self.model.eval() self.model.load_state_dict( torch.load(self.eval_path, map_location=self.device)) self.stft_module = STFTModule(cfg['stft_params'], self.device) self.stft_module_ex1 = STFTModule(cfg['stft_params_ex1'], self.device) self.stft_module_ex2 = STFTModule(cfg['stft_params_ex2'], self.device) self.test_data_num = cfg['test_data_num'] self.test_batch_size = cfg['test_batch_size'] self.sample_len = cfg['sample_len'] self.test_dataset = DSD100Dataset(data_num=self.test_data_num, sample_len=self.sample_len, folder_type='test', device=self.device, shuffle=False) self.test_data_loader = FastDataLoader(self.test_dataset, batch_size=self.test_batch_size, shuffle=False) self.sdr_list = np.array([]) self.sar_list = np.array([]) self.sir_list = np.array([]) def _preprocess(self, mixture, true): with torch.no_grad(): mix_spec = self.stft_module.stft(mixture, pad=True) mix_amp_spec = taF.complex_norm(mix_spec) mix_amp_spec = mix_amp_spec[:, 1:, :] mix_mag_spec = torch.log10(mix_amp_spec + self.eps) #ex1 ex1_mix_spec = self.stft_module_ex1.stft(mixture, pad=True) ex1_mix_amp_spec = taF.complex_norm(ex1_mix_spec) ex1_mix_mag_spec = torch.log10(ex1_mix_amp_spec + self.eps) ex1_mix_mag_spec = ex1_mix_mag_spec[:, 1:, 1:513] #ex2 ex2_mix_spec = self.stft_module_ex2.stft(mixture, pad=True) ex2_mix_amp_spec = taF.complex_norm(ex2_mix_spec) ex2_mix_mag_spec = torch.log10(ex2_mix_amp_spec + self.eps) ex2_mix_mag_spec = ex2_mix_mag_spec[:, 1:, :] batch_size, f_size, t_size = ex2_mix_mag_spec.shape pad_ex2_mix_mag_spec = torch.zeros((batch_size, f_size, 128), dtype=self.dtype, device=self.device) pad_ex2_mix_mag_spec[:, :1024, :127] = ex2_mix_mag_spec[:, :, :] return mix_mag_spec, ex1_mix_mag_spec, pad_ex2_mix_mag_spec, mix_spec def _postprocess(self, x): x = x.squeeze(1) batch_size, f_size, t_size = x.shape pad_x = torch.zeros((batch_size, f_size + 2, t_size), dtype=self.dtype, device=self.device) pad_x[:, 1:-1, :] = x[:, :, :] return pad_x def test(self, mode='test'): with torch.no_grad(): for i, (mixture, _, _, _, vocals) in enumerate(self.test_data_loader): start = time.time() mixture = mixture.squeeze(0).to(self.dtype).to(self.device) true = vocals.squeeze(0).to(self.dtype).to(self.device) mix_mag_spec, ex1_mix_mag_spec, ex2_mix_mag_spec, mix_spec = self._preprocess( mixture, true) est_mask = self.model(mix_mag_spec.unsqueeze(1), ex1_mix_mag_spec.unsqueeze(1), ex2_mix_mag_spec.unsqueeze(1)) est_mask = self._postprocess(est_mask) est_source = mix_spec * est_mask[..., None] est_wave = self.stft_module.istft(est_source) est_wave = est_wave.flatten() mixture = mixture.flatten() true = true.flatten() true_accompany = mixture - true est_accompany = mixture - est_wave sdr, sir, sar = mss_evals(est_wave, est_accompany, true, true_accompany) self.sdr_list = np.append(self.sdr_list, sdr) self.sar_list = np.append(self.sar_list, sar) self.sir_list = np.append(self.sir_list, sir) print('test time:', time.time() - start) print('sdr mean:', np.mean(self.sdr_list)) print('sir mean:', np.mean(self.sir_list)) print('sar mean:', np.mean(self.sar_list))