コード例 #1
0
ファイル: Maligan.py プロジェクト: axueya/Texygen
    def init_real_trainng(self, data_loc=None):
        from utils.text_process import text_precess, text_to_code
        from utils.text_process import get_tokenlized, get_word_list, get_dict
        if data_loc is None:
            data_loc = 'data/image_coco.txt'
        self.sequence_length, self.vocab_size = text_precess(data_loc)

        generator = Generator(num_vocabulary=self.vocab_size, batch_size=self.batch_size, emb_dim=self.emb_dim,
                              hidden_dim=self.hidden_dim, sequence_length=self.sequence_length,
                              start_token=self.start_token)
        self.set_generator(generator)

        discriminator = Discriminator(sequence_length=self.sequence_length, num_classes=2, vocab_size=self.vocab_size,
                                      emd_dim=self.emb_dim, filter_sizes=self.filter_size, num_filters=self.num_filters,
                                      l2_reg_lambda=self.l2_reg_lambda)
        self.set_discriminator(discriminator)

        gen_dataloader = DataLoader(batch_size=self.batch_size, seq_length=self.sequence_length)
        oracle_dataloader = None
        dis_dataloader = DisDataloader(batch_size=self.batch_size, seq_length=self.sequence_length)

        self.set_data_loader(gen_loader=gen_dataloader, dis_loader=dis_dataloader, oracle_loader=oracle_dataloader)
        tokens = get_tokenlized(data_loc)
        word_set = get_word_list(tokens)
        [word_index_dict, index_word_dict] = get_dict(word_set)
        with open(self.oracle_file, 'w') as outfile:
            outfile.write(text_to_code(tokens, word_index_dict, self.sequence_length))
        return word_index_dict, index_word_dict
コード例 #2
0
ファイル: Leakgan.py プロジェクト: shaform/Texygen-scratch
    def init_real_trainng(self, data_loc=None):
        from utils.text_process import text_precess, text_to_code
        from utils.text_process import get_tokenlized, get_word_list, get_dict
        if data_loc is None:
            data_loc = 'data/image_coco.txt'
        self.sequence_length, self.vocab_size = text_precess(data_loc)

        goal_out_size = sum(self.num_filters)
        discriminator = Discriminator(sequence_length=self.sequence_length,
                                      num_classes=2,
                                      vocab_size=self.vocab_size,
                                      dis_emb_dim=self.dis_embedding_dim,
                                      filter_sizes=self.filter_size,
                                      num_filters=self.num_filters,
                                      batch_size=self.batch_size,
                                      hidden_dim=self.hidden_dim,
                                      start_token=self.start_token,
                                      goal_out_size=goal_out_size,
                                      step_size=4,
                                      l2_reg_lambda=self.l2_reg_lambda)
        self.set_discriminator(discriminator)

        generator = Generator(num_classes=2,
                              num_vocabulary=self.vocab_size,
                              batch_size=self.batch_size,
                              emb_dim=self.emb_dim,
                              dis_emb_dim=self.dis_embedding_dim,
                              goal_size=self.goal_size,
                              hidden_dim=self.hidden_dim,
                              sequence_length=self.sequence_length,
                              filter_sizes=self.filter_size,
                              start_token=self.start_token,
                              num_filters=self.num_filters,
                              goal_out_size=goal_out_size,
                              D_model=discriminator,
                              step_size=4)
        self.set_generator(generator)
        gen_dataloader = DataLoader(batch_size=self.batch_size,
                                    seq_length=self.sequence_length)
        oracle_dataloader = None
        dis_dataloader = DisDataloader(batch_size=self.batch_size,
                                       seq_length=self.sequence_length)

        self.set_data_loader(gen_loader=gen_dataloader,
                             dis_loader=dis_dataloader,
                             oracle_loader=oracle_dataloader)
        tokens = get_tokenlized(data_loc)
        word_set = get_word_list(tokens)
        [word_index_dict, index_word_dict] = get_dict(word_set)
        with open(self.oracle_file, 'w') as outfile:
            outfile.write(
                text_to_code(tokens, word_index_dict, self.sequence_length))
        return word_index_dict, index_word_dict
コード例 #3
0
ファイル: Textgan.py プロジェクト: iamsile/Texygen
    def init_real_trainng(self, data_loc=None):
        from utils.text_process import text_precess, text_to_code
        from utils.text_process import get_tokenlized, get_word_list, get_dict
        # from utils.text_process import get_dict
        if data_loc is None:
            data_loc = 'data/image_coco.txt'
        self.sequence_length, self.vocab_size = text_precess(data_loc)

        g_embeddings = tf.Variable(
            tf.random_normal(shape=[self.vocab_size, self.emb_dim],
                             stddev=0.1))
        discriminator = Discriminator(sequence_length=self.sequence_length,
                                      num_classes=2,
                                      emd_dim=self.emb_dim,
                                      filter_sizes=self.filter_size,
                                      num_filters=self.num_filters,
                                      g_embeddings=g_embeddings,
                                      l2_reg_lambda=self.l2_reg_lambda)
        self.set_discriminator(discriminator)
        generator = Generator(num_vocabulary=self.vocab_size,
                              batch_size=self.batch_size,
                              emb_dim=self.emb_dim,
                              hidden_dim=self.hidden_dim,
                              sequence_length=self.sequence_length,
                              g_embeddings=g_embeddings,
                              discriminator=discriminator,
                              start_token=self.start_token)
        self.set_generator(generator)

        gen_dataloader = DataLoader(batch_size=self.batch_size,
                                    seq_length=self.sequence_length)
        oracle_dataloader = None
        dis_dataloader = DisDataloader(batch_size=self.batch_size,
                                       seq_length=self.sequence_length)

        self.set_data_loader(gen_loader=gen_dataloader,
                             dis_loader=dis_dataloader,
                             oracle_loader=oracle_dataloader)
        tokens = get_tokenlized(data_loc)
        word_set = get_word_list(tokens)
        [word_index_dict, index_word_dict] = get_dict(word_set)
        with open(self.oracle_file, 'w') as outfile:
            outfile.write(
                text_to_code(tokens, word_index_dict, self.sequence_length))
        return word_index_dict, index_word_dict
コード例 #4
0
    def init_real_trainng(self, data_loc=None):
        from utils.text_process import text_precess, text_to_code
        from utils.text_process import get_tokenlized, get_word_list, get_dict
        if data_loc is None:
            data_loc = 'data/image_coco.txt'
        self.sequence_length, self.vocab_size = text_precess(data_loc)
        generator = Generator(num_vocabulary=self.vocab_size,
                              batch_size=self.batch_size,
                              emb_dim=self.emb_dim,
                              hidden_dim=self.hidden_dim,
                              sequence_length=self.sequence_length,
                              start_token=self.start_token)
        self.set_generator(generator)

        discriminator = Discriminator(sequence_length=self.sequence_length,
                                      num_classes=2,
                                      vocab_size=self.vocab_size,
                                      emd_dim=self.emb_dim,
                                      filter_sizes=self.filter_size,
                                      num_filters=self.num_filters,
                                      l2_reg_lambda=self.l2_reg_lambda)
        self.set_discriminator(discriminator)

        # 创建dataloader
        gen_dataloader = DataLoader(batch_size=self.batch_size,
                                    seq_length=self.sequence_length)
        # 这时真实文本就使用现实中的文本
        oracle_dataloader = None
        dis_dataloader = DisDataloader(batch_size=self.batch_size,
                                       seq_length=self.sequence_length)
        # data pipe工作在这里完成!!!!!!!!!11
        self.set_data_loader(gen_loader=gen_dataloader,
                             dis_loader=dis_dataloader,
                             oracle_loader=oracle_dataloader)
        tokens = get_tokenlized(data_loc)
        word_set = get_word_list(tokens)
        [word_index_dict, index_word_dict] = get_dict(word_set)
        with open(self.oracle_file, 'w') as outfile:
            # 这里把oracle_file给编码了
            outfile.write(
                text_to_code(tokens, word_index_dict, self.sequence_length))
        return word_index_dict, index_word_dict
コード例 #5
0
    def init_real_trainng(self, data_loc=None):
        from utils.text_process import text_precess, text_to_code
        from utils.text_process import get_tokenlized, get_word_list, get_dict
        if data_loc is None:
            data_loc = 'data/image_coco.txt'
        self.sequence_length, self.vocab_size = text_precess(data_loc)
        generator = Generator(num_vocabulary=self.vocab_size, batch_size=self.batch_size, emb_dim=self.emb_dim,
                              hidden_dim=self.hidden_dim, sequence_length=self.sequence_length,
                              start_token=self.start_token)
        self.set_generator(generator)

        gen_dataloader = DataLoader(batch_size=self.batch_size, seq_length=self.sequence_length)
        oracle_dataloader = None
        dis_dataloader = None

        self.set_data_loader(gen_loader=gen_dataloader, dis_loader=dis_dataloader, oracle_loader=oracle_dataloader)
        tokens = get_tokenlized(data_loc)
        word_set = get_word_list(tokens)
        [word_index_dict, index_word_dict] = get_dict(word_set)
        with open(self.oracle_file, 'w') as outfile:
            outfile.write(text_to_code(tokens, word_index_dict, self.sequence_length))
        return word_index_dict, index_word_dict
コード例 #6
0
    def init_real_trainng(self, data_loc=None):
        from utils.text_process import text_precess, text_to_code
        from utils.text_process import get_tokenlized, get_word_list, get_dict
        if data_loc is None:
            data_loc = 'data/image_coco.txt'
        self.sequence_length, self.vocab_size = text_precess(data_loc)
        generator = Generator(num_vocabulary=self.vocab_size,
                              batch_size=self.batch_size,
                              emb_dim=self.emb_dim,
                              hidden_dim=self.hidden_dim,
                              sequence_length=self.sequence_length,
                              start_token=self.start_token)
        self.set_generator(generator)

        discriminator = Discriminator(sequence_length=self.sequence_length,
                                      num_classes=2,
                                      vocab_size=self.vocab_size,
                                      emd_dim=self.emb_dim,
                                      filter_sizes=self.filter_size,
                                      num_filters=self.num_filters,
                                      l2_reg_lambda=self.l2_reg_lambda,
                                      splited_steps=self.splited_steps)
        self.set_discriminator(discriminator)

        gen_dataloader = DataLoader(batch_size=self.batch_size,
                                    seq_length=self.sequence_length)
        oracle_dataloader = None
        dis_dataloader = DisDataloader(batch_size=self.batch_size,
                                       seq_length=self.sequence_length)

        self.set_data_loader(gen_loader=gen_dataloader,
                             dis_loader=dis_dataloader,
                             oracle_loader=oracle_dataloader)
        tokens = get_tokenlized(data_loc)
        with open(self.oracle_file, 'w') as outfile:
            outfile.write(
                text_to_code(tokens, self.wi_dict, self.sequence_length))
コード例 #7
0
def main():
    print('program start')
    from utils.text_process import text_precess, text_to_code  # TODO: move?
    from utils.text_process import get_tokenlized, get_word_list, get_dict

    random.seed(SEED)
    np.random.seed(SEED)
    assert START_TOKEN == 0

    # JJ added
    SEQ_LENGTH, vocab_size = text_precess(true_file, val_file)

    gen_data_loader = Gen_Data_loader(BATCH_SIZE, SEQ_LENGTH)
    gan_data_loader = Gen_Data_loader(BATCH_SIZE, SEQ_LENGTH)
    val_data_loader = Gen_Data_loader(BATCH_SIZE, SEQ_LENGTH)
    likelihood_data_loader = Gen_Data_loader(BATCH_SIZE,
                                             SEQ_LENGTH)  # For testing
    #vocab_size = 5000

    # JJ added
    # Create training file and dicts
    tokens = get_tokenlized(true_file)
    val_tokens = get_tokenlized(val_file)
    word_set = get_word_list(tokens + val_tokens)
    [word_index_dict, index_word_dict] = get_dict(word_set)
    with open(oracle_file, 'w') as outfile:
        outfile.write(text_to_code(tokens, word_index_dict, SEQ_LENGTH))
    with open(val_oracle_file, 'w') as outfile:
        outfile.write(text_to_code(val_tokens, word_index_dict, SEQ_LENGTH))

    generator = Generator(vocab_size, BATCH_SIZE, EMB_DIM, HIDDEN_DIM,
                          SEQ_LENGTH, START_TOKEN)
    #target_params = pickle.load(open('save/target_params_py3.pkl', 'rb'))
    #target_lstm = TARGET_LSTM(vocab_size, BATCH_SIZE, 32, 32, SEQ_LENGTH, START_TOKEN, target_params) # The oracle model

    mediator = Mediator(vocab_size,
                        BATCH_SIZE,
                        EMB_DIM * 2,
                        HIDDEN_DIM * 2,
                        SEQ_LENGTH,
                        START_TOKEN,
                        name="mediator",
                        dropout_rate=M_DROPOUT_RATE,
                        learning_rate=3e-3,
                        with_professor_forcing=False)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    sess.run(tf.global_variables_initializer())

    # First, use the oracle model to provide the positive examples, which are sampled from the oracle data distribution
    #generate_samples(sess, target_lstm, BATCH_SIZE, generated_num, positive_file)
    gen_data_loader.create_batches(oracle_file)  #positive_file)
    gan_data_loader.create_batches(oracle_file)  #positive_file)
    #generate_samples(sess, target_lstm, BATCH_SIZE, generated_num, eval_file)
    val_data_loader.create_batches(val_oracle_file)  #eval_file)

    log = open('save/experiment-log.txt', 'w')
    log_nll = open('save/experiment-log-nll.txt', 'w')
    #log_jsd = open('save/experiment-log-jsd.txt', 'w')

    #  pre-train generator (default 0 epochs)(not recommended)
    print('Start pre-training...')
    log.write('pre-training...\n')
    saver = tf.train.Saver(tf.global_variables())
    if RESTORE:
        saver.restore(sess, "saved_model/CoT")
    for epoch in range(PRE_EPOCH_NUM):
        loss = mle_epoch(sess, generator, gen_data_loader)
        if epoch % 1 == 0:
            generate_samples(sess, generator, BATCH_SIZE, generated_num,
                             negative_file)
            likelihood_data_loader.create_batches(negative_file)
            test_loss = target_loss(sess, target_lstm, likelihood_data_loader)
            print('pre-train epoch ', epoch, 'nll_oracle ', test_loss)
            buffer = 'epoch:\t' + str(epoch) + '\tnll_oracle:\t' + str(
                test_loss) + '\n'
            log_nll.write(buffer)
        if epoch % 1 == 0:
            test_loss = target_loss(sess, generator, val_data_loader)
            print('pre-train epoch ', epoch, 'nll_test ', test_loss)
            buffer = 'epoch:\t' + str(epoch) + '\tnll_test:\t' + str(
                test_loss) + '\n'
            log_nll.write(buffer)

    print(
        '#########################################################################'
    )
    toc = time.time()  # JJ
    print('Start Cooperative Training...')
    for iter_idx in range(TOTAL_BATCH):
        print('iteration: ' + str(iter_idx) + '\ntime: ' +
              str(time.time() - toc))
        toc = time.time()
        # Train the generator for one step
        for it in range(1):
            samples = generator.generate(sess)
            rewards = mediator.get_reward(sess, samples)
            feed = {generator.x: samples, generator.rewards: rewards}
            _ = sess.run(
                generator.g_updates, feed_dict=feed
            )  # JJ -> loss, _ = sess.run([generator.g_loss, generator.g_updates], feed_dict=feed)
        # Test
        # JJ delete
        '''
        if iter_idx % 100 == 0 or iter_idx == TOTAL_BATCH - 1:
            generate_samples(sess, generator, BATCH_SIZE, generated_num, negative_file)
            likelihood_data_loader.create_batches(negative_file)
            test_loss = target_loss(sess, target_lstm, likelihood_data_loader)
            buffer = 'batch:\t' + str(iter_idx) + '\tnll_oracle:\t' + str(test_loss) + '\n'
            print('batch: ', iter_idx, 'nll_oracle: ', test_loss)
            log_nll.write(buffer)
        '''
        if iter_idx % gen_data_loader.num_batch == 0:  # epochs instead of batches #if iter_idx % 100 == 0:
            test_loss = target_loss(sess, generator, val_data_loader)
            print('epoch:\t', iter_idx // gen_data_loader.num_batch,
                  'nll_test ', test_loss)
            buffer = 'epoch:\t' + str(
                iter_idx // gen_data_loader.num_batch) + '\tnll_test:\t' + str(
                    test_loss) + '\n'
            #print('batch:\t', iter_idx, 'nll_test ', test_loss)
            #buffer = 'batch:\t'+ str(iter_idx) + '\tnll_test:\t' + str(test_loss) + '\n'
            log_nll.write(buffer)
            saver.save(sess, "saved_model/CoT")
        # Train the mediator
        for _ in range(1):
            bnll_ = []
            """
            d_loss_ = []
            for it in range(3):
                feed = {
                    mediator.x0: gan_data_loader.next_batch(),
                    mediator.x1: generator.generate(sess)
                }
                d_loss, _ = sess.run([mediator.d_loss, mediator.d_update], feed)
                d_loss_.append(d_loss)
            """
            for it in range(1):
                feed = {
                    mediator.x0: gen_data_loader.next_batch(),
                    mediator.x1: generator.generate(sess)
                }
                bnll = sess.run(mediator.likelihood_loss, feed)
                bnll_.append(bnll)
                sess.run(mediator.dropout_on)
                _ = sess.run(mediator.likelihood_updates, feed)
                sess.run(mediator.dropout_off)
            if iter_idx % 10 == 0:
                bnll = np.mean(bnll_)
                print("mediator cooptrain iter#%d, balanced_nll %f" %
                      (iter_idx, bnll))
                log.write("%d\t%f\n" % (iter_idx, bnll))
        #if iter_idx % gen_data_loader.num_batch == 0:
        #jsd = jsd_calculate(sess, generator, target_lstm)
        #print('cooptrain epoch#', iter_idx // gen_data_loader.num_batch, 'jsd ', jsd)
        #log_jsd.write("%d\t%f\n" % (iter_idx // gen_data_loader.num_batch, jsd))
        #saver.save(sess, "saved_model/CoT")
    log.close()
    log_nll.close()
コード例 #8
0
ファイル: Leakgan.py プロジェクト: martin6336/AttentionGAN
    def init_real_trainng(self, data_loc=None):
        from utils.text_process import text_precess, text_to_code
        from utils.text_process import get_tokenlized, get_word_list, get_dict
        if data_loc is None:
            data_loc = 'data/image_coco.txt'
        # 控制台直接运行函数输出(38, 4682)
        # end_token 4681
        # start_token是0,seq中oracle文件是转码后的文本,里面没有start_token,但是运行的时候起始输入是0对应的向量
        # 其实0对应的是个单词,并不是start_token,但是初始化统一为他也行
        # return sequence_len+1, len(word_index_dict) + 1
        self.sequence_length, self.vocab_size = text_precess(data_loc)
        end_token = self.vocab_size - 1
        # self.sequence_length += 1
        ###!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        # goal_out_size = sum(self.num_filters)
        goal_out_size = self.emb_dim
        discriminator = Discriminator(sequence_length=self.sequence_length,
                                      num_classes=2,
                                      vocab_size=self.vocab_size,
                                      dis_emb_dim=self.dis_embedding_dim,
                                      filter_sizes=self.filter_size,
                                      num_filters=self.num_filters,
                                      batch_size=self.batch_size,
                                      hidden_dim=self.hidden_dim,
                                      start_token=self.start_token,
                                      goal_out_size=goal_out_size,
                                      step_size=self.step_size,
                                      l2_reg_lambda=self.l2_reg_lambda)
        # add
        self.set_discriminator(discriminator)
        # reward_co=self.reward_co
        att_model = Att_dis(vocab_size=self.vocab_size,
                            emd_dim=self.emb_dim,
                            sequence_length=self.sequence_length,
                            batch_size=self.batch_size,
                            sess=self.sess,
                            end_token=end_token)
        self.att_model = att_model

        generator = Generator(num_classes=2,
                              num_vocabulary=self.vocab_size,
                              batch_size=self.batch_size,
                              emb_dim=self.emb_dim,
                              dis_emb_dim=self.dis_embedding_dim,
                              goal_size=self.goal_size,
                              hidden_dim=self.hidden_dim,
                              sequence_length=self.sequence_length,
                              filter_sizes=self.filter_size,
                              start_token=self.start_token,
                              num_filters=self.num_filters,
                              goal_out_size=goal_out_size,
                              D_model=discriminator,
                              att_model=att_model,
                              step_size=self.step_size,
                              sess=self.sess,
                              end_token=end_token)
        self.set_generator(generator)
        gen_dataloader = DataLoader(batch_size=self.batch_size,
                                    seq_length=self.sequence_length,
                                    end_token=end_token)
        oracle_dataloader = None
        dis_dataloader = DisDataloader(batch_size=self.batch_size,
                                       seq_length=self.sequence_length)

        self.set_data_loader(gen_loader=gen_dataloader,
                             dis_loader=dis_dataloader,
                             oracle_loader=oracle_dataloader)
        tokens = get_tokenlized(data_loc)
        word_set = get_word_list(tokens)
        [word_index_dict, index_word_dict] = get_dict(word_set)
        with open(self.oracle_file, 'w') as outfile:
            outfile.write(
                text_to_code(tokens, word_index_dict, self.sequence_length))
        return word_index_dict, index_word_dict
コード例 #9
0
    def init_real_trainng(self, data_loc=None):
        from utils.text_process import text_precess, text_to_code
        from utils.text_process import get_tokenlized, get_word_list, get_dict
        if data_loc is None:
            data_loc = 'data/image_coco.txt'
        self.sequence_length, self.vocab_size = text_precess(data_loc)

        goal_out_size = sum(self.num_filters)
        discriminator = Discriminator(sequence_length=self.sequence_length,
                                      num_classes=2,
                                      vocab_size=self.vocab_size,
                                      dis_emb_dim=self.dis_embedding_dim,
                                      filter_sizes=self.filter_size,
                                      num_filters=self.num_filters,
                                      batch_size=self.batch_size,
                                      hidden_dim=self.hidden_dim,
                                      start_token=self.start_token,
                                      goal_out_size=goal_out_size,
                                      step_size=4,
                                      l2_reg_lambda=self.l2_reg_lambda)
        self.set_discriminator(discriminator)

        generator = Generator(num_classes=2,
                              num_vocabulary=self.vocab_size,
                              batch_size=self.batch_size,
                              emb_dim=self.emb_dim,
                              dis_emb_dim=self.dis_embedding_dim,
                              goal_size=self.goal_size,
                              hidden_dim=self.hidden_dim,
                              sequence_length=self.sequence_length,
                              filter_sizes=self.filter_size,
                              start_token=self.start_token,
                              num_filters=self.num_filters,
                              goal_out_size=goal_out_size,
                              D_model=discriminator,
                              step_size=4)
        self.set_generator(generator)
        gen_dataloader = DataLoader(batch_size=self.batch_size,
                                    seq_length=self.sequence_length)
        oracle_dataloader = None
        dis_dataloader = DisDataloader(batch_size=self.batch_size,
                                       seq_length=self.sequence_length)

        self.set_data_loader(gen_loader=gen_dataloader,
                             dis_loader=dis_dataloader,
                             oracle_loader=oracle_dataloader)
        tokens = get_tokenlized(data_loc)
        word_set = get_word_list(tokens)
        #[word_index_dict, index_word_dict] = get_dict(word_set)#Original

        [word_index_dict, index_word_dict] = [{
            'b': '0',
            'a': '1',
            'r': '2',
            'n': '3',
            'd': '4',
            'c': '5',
            'q': '6',
            'e': '7',
            'g': '8',
            'h': '9',
            'i': '10',
            'l': '11',
            'k': '12',
            'm': '13',
            'f': '14',
            'p': '15',
            's': '16',
            't': '17',
            'w': '18',
            'y': '19',
            'v': '20'
        }, {
            '0': 'b',
            '1': 'a',
            '2': 'r',
            '3': 'n',
            '4': 'd',
            '5': 'c',
            '6': 'q',
            '7': 'e',
            '8': 'g',
            '9': 'h',
            '10': 'i',
            '11': 'l',
            '12': 'k',
            '13': 'm',
            '14': 'f',
            '15': 'p',
            '16': 's',
            '17': 't',
            '18': 'w',
            '19': 'y',
            '20': 'v'
        }]

        with open(self.oracle_file, 'w') as outfile:
            outfile.write(
                text_to_code(tokens, word_index_dict, self.sequence_length))
        return word_index_dict, index_word_dict
コード例 #10
0
def main():
    print('program start')
    from utils.text_process import text_precess, text_to_code  # TODO: move?
    from utils.text_process import get_tokenlized, get_word_list, get_dict

    random.seed(SEED)
    np.random.seed(SEED)
    assert START_TOKEN == 0

    SEQ_LENGTH, vocab_size = text_precess(true_file, val_file)
    gen_data_loader = Gen_Data_loader(BATCH_SIZE, SEQ_LENGTH)
    val_data_loader = Gen_Data_loader(BATCH_SIZE, SEQ_LENGTH)

    # Create training file and dicts
    tokens = get_tokenlized(true_file)
    val_tokens = get_tokenlized(val_file)
    word_set = get_word_list(tokens + val_tokens)
    [word_index_dict, index_word_dict] = get_dict(word_set)
    with open(oracle_file, 'w') as outfile:
        outfile.write(text_to_code(tokens, word_index_dict, SEQ_LENGTH))
    with open(val_oracle_file, 'w') as outfile:
        outfile.write(text_to_code(val_tokens, word_index_dict, SEQ_LENGTH))

    generator = Generator(vocab_size, BATCH_SIZE, EMB_DIM, HIDDEN_DIM,
                          SEQ_LENGTH, START_TOKEN)
    #target_params = pickle.load(open('save/target_params_py3.pkl', 'rb'))
    #target_lstm = TARGET_LSTM(vocab_size, BATCH_SIZE, 32, 32, SEQ_LENGTH, START_TOKEN, target_params) # The oracle model
    # replace target lstm with true data

    mediator = Generator(vocab_size,
                         BATCH_SIZE * 2,
                         EMB_DIM * 2,
                         HIDDEN_DIM * 2,
                         SEQ_LENGTH,
                         START_TOKEN,
                         name="mediator",
                         dropout_rate=M_DROPOUT_RATE)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    sess.run(tf.global_variables_initializer())

    gen_data_loader.create_batches(oracle_file)
    val_data_loader.create_batches(val_oracle_file)

    log = open('save/experiment-log.txt', 'w')
    log_nll = open('save/experiment-log-nll.txt', 'w')

    #  pre-train generator (default 0 epochs)(not recommended)
    print('Start pre-training...')
    log.write('pre-training...\n')
    for epoch in range(PRE_EPOCH_NUM):
        loss = mle_epoch(sess, generator, gen_data_loader)
        if epoch % 5 == 0:
            generate_samples(sess, generator, BATCH_SIZE, generated_num,
                             generator_file)
            #get_real_test_file(index_word_dict, generator_file, test_file) # only needed in debugging
            test_loss = target_loss(sess, generator, val_data_loader)
            print('pre-train epoch ', epoch, 'nll_test ', test_loss)
            buffer = 'epoch:\t' + str(epoch) + '\tnll_test:\t' + str(
                test_loss) + '\n'
            log_nll.write(buffer)

    print(
        '#########################################################################'
    )
    toc = time.time()
    print('Start Cooperative Training...')
    for iter_idx in range(TOTAL_BATCH):
        print('iteration: ' + str(iter_idx) + '\ntime: ' +
              str(time.time() - toc))
        toc = time.time()
        # Train the generator for one step
        for it in range(1):
            samples = generator.generate(sess)
            rewards = mediator.get_reward(
                sess, np.concatenate([samples, samples], axis=0))
            feed = {
                generator.x: samples,
                generator.rewards: rewards[0:BATCH_SIZE]
            }
            loss, _ = sess.run([generator.g_loss, generator.g_updates],
                               feed_dict=feed)
        # Test, removed oracle test
        if iter_idx % gen_data_loader.num_batch == 0:  # epochs instead of batches
            test_loss = target_loss(sess, generator, val_data_loader)
            print('epoch:\t', iter_idx // gen_data_loader.num_batch,
                  'nll_test ', test_loss)
            buffer = 'epoch:\t' + str(
                iter_idx // gen_data_loader.num_batch) + '\tnll_test:\t' + str(
                    test_loss) + '\n'
            log_nll.write(buffer)
        if iter_idx == TOTAL_BATCH - 1:
            print('generating samples')
            generate_samples(sess, generator, BATCH_SIZE, generated_num,
                             generator_file)
            get_real_test_file(index_word_dict, generator_file, test_file)
        # Train the mediator
        for _ in range(1):
            print('training mediator...')
            bnll_ = []
            collected_x = []
            ratio = 2
            for it in range(ratio):
                if it % 2 == 0:
                    x_batch = gen_data_loader.next_batch()
                else:
                    x_batch = generator.generate(sess)
                collected_x.append(x_batch)
            collected_x = np.reshape(collected_x, [-1, SEQ_LENGTH])
            np.random.shuffle(collected_x)
            collected_x = np.reshape(collected_x,
                                     [-1, BATCH_SIZE * 2, SEQ_LENGTH])
            for it in range(1):
                feed = {
                    mediator.x: collected_x[it],
                }
                print('running bnll sess')
                bnll = sess.run(mediator.likelihood_loss, feed)
                bnll_.append(bnll)
                print('running mediator and updating')
                sess.run(mediator.dropout_on)
                _ = sess.run(mediator.likelihood_updates, feed)
                sess.run(mediator.dropout_off)
            if iter_idx % 50 == 0:
                bnll = np.mean(bnll_)
                print("mediator cooptrain iter#%d, balanced_nll %f" %
                      (iter_idx, bnll))
                log.write("%d\t%f\n" % (iter_idx, bnll))

    log.close()
    log_nll.close()