コード例 #1
0
ファイル: main.py プロジェクト: copark86/VINet
def train(epoch, model, optimizer, batch):

    writer = SummaryWriter()

    model.train()

    mydataset = MyDataset('/notebooks/EuRoC_modify/', 'V1_01_easy')
    #criterion  = nn.MSELoss()
    criterion = nn.L1Loss(size_average=False)

    start = 5
    end = len(mydataset) - batch
    batch_num = (end - start)  #/ batch
    startT = time.time()
    with tools.TimerBlock("Start training") as block:
        for k in range(epoch):
            for i in range(start, end):  #len(mydataset)-1):
                data, data_imu, target, target2 = mydataset.load_img_bat(
                    i, batch)
                data, data_imu, target, target2 = data.cuda(), data_imu.cuda(
                ), target.cuda(), target2.cuda()

                optimizer.zero_grad()
                output = model(data, data_imu)
                loss = criterion(output, target) + criterion(output, target2)

                loss.backward()
                optimizer.step()

                avgTime = block.avg()
                remainingTime = int(
                    (batch_num * epoch - (i + batch_num * k)) * avgTime)
                rTime_str = "{:02d}:{:02d}:{:02d}".format(
                    int(remainingTime / 60 // 60),
                    int(remainingTime // 60 % 60), int(remainingTime % 60))

                block.log(
                    'Train Epoch: {}\t[{}/{} ({:.0f}%)]\tLoss: {:.6f}, TimeAvg: {:.4f}, Remaining: {}'
                    .format(k, i, batch_num,
                            100. * (i + batch_num * k) / (batch_num * epoch),
                            loss.data[0], avgTime, rTime_str))

                writer.add_scalar('loss', loss.data[0], k * batch_num + i)

            check_str = 'checkpoint_{}.pt'.format(k)
            torch.save(model.state_dict(), check_str)

    #torch.save(model, 'vinet_v1_01.pt')
    #model.save_state_dict('vinet_v1_01.pt')
    torch.save(model.state_dict(), 'vinet_v1_01.pt')
    writer.export_scalars_to_json("./all_scalars.json")
    writer.close()
コード例 #2
0
ファイル: main.py プロジェクト: Aashikr/VINet
def train(epoch, model, optimizer, batch):
    model.train()

    mydataset = MyDataset('/notebooks/data/euroc/', 'V1_01_easy')
    criterion = nn.MSELoss()

    start = 5
    end = len(mydataset) - batch
    batch_num = (end - start) / batch
    startT = time.time()
    with tools.TimerBlock("Start training") as block:
        for i in range(start, end, batch):  #len(mydataset)-1):
            data, target = mydataset.load_img_bat(i, batch)
            data, target = data.cuda(), target.cuda()

            optimizer.zero_grad()
            output = model(data)
            #print('output', output.shape)
            #print('target', target.shape)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()

            if i % 1 == 0:
                avgTime = block.avg()
                remainingTime = int((batch_num - (i / batch)) * avgTime)
                rTime_str = "{:02d}:{:02d}:{:02d}".format(
                    remainingTime / 60 // 60, remainingTime // 60 % 60,
                    remainingTime % 60)
                #rTime_str = str(remainingTime/60//60) + ':' + str(remainingTime//60%60) + ':' + str(remainingTime%60)

                #print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, Time remaining: {:.4f}'.format(
                #    i/batch, i/batch , batch_num,
                #    100. * i/batch / batch_num, loss.data[0], avgTime))
                block.log(
                    'Train Epoch: {}\t[{}/{} ({:.0f}%)]\tLoss: {:.6f}, TimeAvg: {:.4f}, Remaining: {}'
                    .format(i / batch, i / batch, batch_num,
                            100. * i / batch / batch_num, loss.data[0],
                            avgTime, rTime_str))
            if i % 500 == 0 and i != 0:
                check_str = 'checkpoint_{}.pt'.format(i / batch)
                #torch.save(model, check_str)
                #model.save_state_dict(check_str)
                torch.save(model.state_dict(), check_str)

    #torch.save(model, 'vinet_v1_01.pt')
    #model.save_state_dict('vinet_v1_01.pt')
    torch.save(model.state_dict(), 'vinet_v1_01.pt')
コード例 #3
0
    tools.add_arguments_for_module(parser,
                                   datasets,
                                   argument_for_class='inference_dataset',
                                   default='MpiSintelClean',
                                   skip_params=['is_cropped'],
                                   parameter_defaults={
                                       'root': './MPI-Sintel/flow/training',
                                       'replicates': 1
                                   })

    main_dir = os.path.dirname(os.path.realpath(__file__))
    os.chdir(main_dir)

    # Parse the official arguments
    with tools.TimerBlock("Parsing Arguments") as block:
        args = parser.parse_args()

        # Get argument defaults (hastag #thisisahack)
        parser.add_argument('--IGNORE', action='store_true')
        defaults = vars(parser.parse_args(['--IGNORE']))

        # Print all arguments, color the non-defaults
        for argument, value in sorted(vars(args).items()):
            reset = colorama.Style.RESET_ALL
            color = reset if value == defaults[
                argument] else colorama.Fore.MAGENTA
            block.log('{}{}: {}{}'.format(color, argument, value, reset))

        args.model_class = tools.module_to_dict(models)[args.model]
        args.optimizer_class = tools.module_to_dict(
コード例 #4
0
    parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
    parser.add_argument('--log_frequency', '--summ_iter', type=int, default=1, help="Log every n batches")

    tools.add_arguments_for_module(parser, models, argument_for_class='model', default='FlowNet2')
    
    tools.add_arguments_for_module(parser, datasets, argument_for_class='inference_dataset', default='Google', 
                                    skip_params=['is_cropped'],
                                    parameter_defaults={'root': './Google/train',
                                                        'replicates': 1})

    main_dir = os.path.dirname(os.path.realpath(__file__))
    os.chdir(main_dir)

    # Parse the official arguments
    with tools.TimerBlock("Parsing Arguments") as block:
        args = parser.parse_args()
        if args.number_gpus < 0 : args.number_gpus = torch.cuda.device_count()

        # Get argument defaults (hastag #thisisahack)
        parser.add_argument('--IGNORE',  action='store_true')
        defaults = vars(parser.parse_args(['--IGNORE']))

        # Print all arguments, color the non-defaults
        for argument, value in sorted(vars(args).items()):
            reset = colorama.Style.RESET_ALL
            color = reset if value == defaults[argument] else colorama.Fore.MAGENTA
            block.log('{}{}: {}{}'.format(color, argument, value, reset))

        args.model_class = tools.module_to_dict(models)[args.model]
コード例 #5
0
ファイル: main_origin.py プロジェクト: jinwooklim/DML-vinet
def train():
    epoch = 10
    batch = 1
    model = Vinet()
    optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    #optimizer = optim.Adam(model.parameters(), lr = 0.001)

    writer = SummaryWriter()

    model.train()

    mydataset = MyDataset('/notebooks/EuRoC_modify/', 'V1_01_easy')
    #criterion  = nn.MSELoss()
    criterion = nn.L1Loss(size_average=False)

    start = 5
    end = len(mydataset) - batch
    batch_num = (end - start)  #/ batch
    startT = time.time()
    abs_traj = None

    with tools.TimerBlock("Start training") as block:
        for k in range(epoch):
            for i in range(start, end):  #len(mydataset)-1):
                data, data_imu, target_f2f, target_global = mydataset.load_img_bat(
                    i, batch)
                data, data_imu, target_f2f, target_global = \
                    data.cuda(), data_imu.cuda(), target_f2f.cuda(), target_global.cuda()

                optimizer.zero_grad()

                if i == start:
                    ## load first SE3 pose xyzQuaternion
                    abs_traj = mydataset.getTrajectoryAbs(start)

                    abs_traj_input = np.expand_dims(abs_traj, axis=0)
                    abs_traj_input = np.expand_dims(abs_traj_input, axis=0)
                    abs_traj_input = Variable(
                        torch.from_numpy(abs_traj_input).type(
                            torch.FloatTensor).cuda())

                ## Forward
                output = model(data, data_imu, abs_traj_input)

                ## Accumulate pose
                numarr = output.data.cpu().numpy()

                abs_traj = se3qua.accu(abs_traj, numarr)

                abs_traj_input = np.expand_dims(abs_traj, axis=0)
                abs_traj_input = np.expand_dims(abs_traj_input, axis=0)
                abs_traj_input = Variable(
                    torch.from_numpy(abs_traj_input).type(
                        torch.FloatTensor).cuda())

                ## (F2F loss) + (Global pose loss)
                ## Global pose: Full concatenated pose relative to the start of the sequence
                loss = criterion(output, target_f2f) + criterion(
                    abs_traj_input, target_global)

                loss.backward()
                optimizer.step()

                avgTime = block.avg()
                remainingTime = int(
                    (batch_num * epoch - (i + batch_num * k)) * avgTime)
                rTime_str = "{:02d}:{:02d}:{:02d}".format(
                    int(remainingTime / 60 // 60),
                    int(remainingTime // 60 % 60), int(remainingTime % 60))

                block.log(
                    'Train Epoch: {}\t[{}/{} ({:.0f}%)]\tLoss: {:.6f}, TimeAvg: {:.4f}, Remaining: {}'
                    .format(k, i, batch_num,
                            100. * (i + batch_num * k) / (batch_num * epoch),
                            loss.data[0], avgTime, rTime_str))

                writer.add_scalar('loss', loss.data[0], k * batch_num + i)

            check_str = 'checkpoint_{}.pt'.format(k)
            torch.save(model.state_dict(), check_str)

    #torch.save(model, 'vinet_v1_01.pt')
    #model.save_state_dict('vinet_v1_01.pt')
    torch.save(model.state_dict(), 'vinet_v1_01.pt')
    writer.export_scalars_to_json("./all_scalars.json")
    writer.close()
コード例 #6
0
def train():
    epoch = 5
    batch = 4
    timesteps = 4  # 2
    imu_seq_len = 3
    #mydataset = MyDataset('/notebooks/EuRoC_modify/', 'V1_01_easy', batch, timesteps, imu_seq_len)
    mydataset = MyDataset('/notebooks/data/Total_Data/', '00', batch,
                          timesteps, imu_seq_len)
    start = 5
    end = len(mydataset) - (timesteps * batch)
    step = timesteps - 1

    model = Vinet()
    model.train()

    #optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    #optimizer = optim.Adam(model.parameters(), lr = 0.001, weight_decay=0.1)
    optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=0.1)

    #criterion  = nn.MSELoss(size_average=False)
    criterion = nn.MSELoss()

    writer = SummaryWriter()
    startT = time.time()

    init_SE3 = None

    total_i = 0
    with tools.TimerBlock("Start training") as block:
        for k in range(1, epoch + 1):
            for i in range(start, end, step):
                #print(k, " ", i, " -> ", i+timesteps-1, end=" ")
                img, imu, init_SE3, target_f2f, target_global = mydataset.load_img_bat(
                    i)
                img, imu, init_SE3, target_f2f, target_global = img.cuda(
                ), imu.cuda(), init_SE3.cuda(), target_f2f.cuda(
                ), target_global.cuda()
                optimizer.zero_grad()

                ## LSTM part Forward
                se3, composed_SE3 = model(img, imu, init_SE3)  # (batch, 6)

                ## (F2F loss) + (Global pose loss)
                ## Global pose: Full concatenated pose relative to the start of the sequence
                ## (batch, timesteps, 6, 1) // (batch, timesteps, 7, 1)
                #loss_se3 =
                #lossSE3 =
                loss = criterion(se3.cpu(), target_f2f.cpu()) + criterion(
                    composed_SE3.cpu(), target_global.cpu())

                loss.backward()
                optimizer.step()

                #avgTime = block.avg()
                #remainingTime = int((batch_num*epoch - (i + batch_num*k)) * avgTime)
                #remainingTime = int((epoch*len(mydataset)*avgTime) - (k*total_i*avgTime))
                #rTime_str = "{:02d}:{:02d}:{:02d}".format(int(remainingTime/60//60),
                #                                      int(remainingTime//60%60),
                #                                      int(remainingTime%60))

                #block.log('Train Epoch: {} iter: {}/{} \t Loss: {:.6f}, TimeAvg: {:.4f}, Remaining: {}'.format(k, start+i, end, loss.data[0], avgTime, rTime_str))

                now = time.localtime()
                print("Train Epoch: {} iter: {}/{} \t Loss: {:.6f}".format(
                    k, start + i, end, loss.data[0]),
                      end=" ")
                print("\t Time: %02d-%02d %02d:%02d:%02d" %
                      (now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min,
                       now.tm_sec))

                if (i % 100 == 0):
                    check_str = "checkpoint_%02d.pt" % (k)
                    torch.save(model.state_dict(), check_str)

            total_i = total_i + len(mydataset) - 1 - start

    #torch.save(model, 'vinet_v1_01.pt')
    #model.save_state_dict('vinet_v1_01.pt')
    #torch.save(model.state_dict(), 'vinet_v1_01.pt')
    #writer.export_scalars_to_json("./all_scalars.json")
    writer.close()
コード例 #7
0
ファイル: FlowNetAPI.py プロジェクト: Guliisgreat/FlowAPI
    def load_model(self):

        self.gpuargs = {'num_workers': self.args.number_workers, 'pin_memory': True} if self.args.cuda else {}

        with tools.TimerBlock("Building {} model".format(self.args.model)) as block:
            class ModelAndLoss(nn.Module):
                def __init__(self, args):
                    super(ModelAndLoss, self).__init__()
                    kwargs = tools.kwargs_from_args(args, 'model')
                    self.model = args.model_class(args, **kwargs)
                    kwargs = tools.kwargs_from_args(args, 'loss')
                    self.loss = args.loss_class(args, **kwargs)

                def forward(self, data, target, inference=False):
                    output = self.model(data)

                    loss_values = self.loss(output, target)

                    if not inference:
                        return loss_values
                    else:
                        return loss_values, output

            self.model_and_loss = ModelAndLoss(self.args)

            # block.log('Effective Batch Size: {}'.format(self.args.effective_batch_size))
            block.log('Number of parameters: {}'.format(
                sum([p.data.nelement() if p.requires_grad else 0 for p in self.model_and_loss.parameters()])))

            ## # assing to cuda or wrap with dataparallel, model and loss
            if self.args.cuda and (self.args.number_gpus > 0) and self.args.fp16:
                block.log('Parallelizing')
                model_and_loss = nn.parallel.DataParallel(self.model_and_loss, device_ids=list(range(self.args.number_gpus)))

                block.log('Initializing CUDA')
                model_and_loss = model_and_loss.cuda().half()
                torch.cuda.manual_seed(self.args.seed)
                param_copy = [param.clone().type(torch.cuda.FloatTensor).detach() for param in
                              model_and_loss.parameters()]

            elif self.args.cuda and self.args.number_gpus > 0:
                block.log('Initializing CUDA')
                model_and_loss = self.model_and_loss.cuda()
                block.log('Parallelizing')
                model_and_loss = nn.parallel.DataParallel(model_and_loss, device_ids=list(range(self.args.number_gpus)))
                torch.cuda.manual_seed(self.args.seed)

            else:
                block.log('CUDA not being used')
                torch.manual_seed(self.args.seed)
            cwd = os.getcwd()
            print(cwd)
            # Load weights if needed, otherwise randomly initialize
            if self.args.resume and os.path.isfile(self.args.resume):
                block.log("Loading checkpoint '{}'".format(self.args.resume))
                checkpoint = torch.load(self.args.resume)
                # if (not args.inference) and (not args.test):
                #     args.start_epoch = checkpoint['epoch']
                # best_err = checkpoint['best_EPE']
                model_and_loss.module.model.load_state_dict(checkpoint['state_dict'])
                block.log("Loaded checkpoint '{}' (at epoch {})".format(self.args.resume, checkpoint['epoch']))

            elif self.args.resume:
                block.log("No checkpoint found at '{}'".format(self.args.resume))
                quit()

            else:
                block.log("Random initialization")

            block.log("Initializing save directory: {}".format(self.args.save))
            if not os.path.exists(self.args.save):
                os.makedirs(self.args.save)

        self.warping_model = FlowWarping()
        print("Warping Model initialized")
コード例 #8
0
def initialize_args():

    if __name__ == '__main__':
        parser = argparse.ArgumentParser()

        parser.add_argument('--start_epoch', type=int, default=1)
        parser.add_argument('--total_epochs', type=int, default=10000)
        parser.add_argument('--batch_size',
                            '-b',
                            type=int,
                            default=8,
                            help="Batch size")
        parser.add_argument(
            '--train_n_batches',
            type=int,
            default=-1,
            help=
            'Number of min-batches per epoch. If < 0, it will be determined by training_dataloader'
        )
        parser.add_argument(
            '--crop_size',
            type=int,
            nargs='+',
            default=[256, 256],
            help="Spatial dimension to crop training samples for training")
        parser.add_argument('--gradient_clip', type=float, default=None)
        parser.add_argument('--schedule_lr_frequency',
                            type=int,
                            default=0,
                            help='in number of iterations (0 for no schedule)')
        parser.add_argument('--schedule_lr_fraction', type=float, default=10)
        parser.add_argument("--rgb_max", type=float, default=255.)

        parser.add_argument('--number_workers',
                            '-nw',
                            '--num_workers',
                            type=int,
                            default=8)
        parser.add_argument('--number_gpus',
                            '-ng',
                            type=int,
                            default=-1,
                            help='number of GPUs to use')
        parser.add_argument('--no_cuda', action='store_true')

        parser.add_argument('--seed', type=int, default=1)
        parser.add_argument('--name',
                            default='run',
                            type=str,
                            help='a name to append to the save directory')
        parser.add_argument('--save',
                            '-s',
                            default='./work',
                            type=str,
                            help='directory for saving')

        parser.add_argument('--validation_frequency',
                            type=int,
                            default=5,
                            help='validate every n epochs')
        parser.add_argument('--validation_n_batches', type=int, default=-1)
        parser.add_argument(
            '--render_validation',
            action='store_true',
            help=
            'run inference (save flows to file) and every validation_frequency epoch'
        )

        parser.add_argument('--inference', action='store_true')
        parser.add_argument(
            '--inference_size',
            type=int,
            nargs='+',
            default=[-1, -1],
            help=
            'spatial size divisible by 64. default (-1,-1) - largest possible valid size would be used'
        )
        parser.add_argument('--inference_batch_size', type=int, default=1)
        parser.add_argument('--inference_n_batches', type=int, default=-1)
        parser.add_argument('--save_flow',
                            action='store_true',
                            help='save predicted flows to file')

        parser.add_argument('--resume',
                            default='',
                            type=str,
                            metavar='PATH',
                            help='path to latest checkpoint (default: none)')
        parser.add_argument('--log_frequency',
                            '--summ_iter',
                            type=int,
                            default=1,
                            help="Log every n batches")

        parser.add_argument('--skip_training', action='store_true')
        parser.add_argument('--skip_validation', action='store_true')

        parser.add_argument(
            '--fp16',
            action='store_true',
            help='Run model in pseudo-fp16 mode (fp16 storage fp32 math).')
        parser.add_argument(
            '--fp16_scale',
            type=float,
            default=1024.,
            help=
            'Loss scaling, positive power of 2 values can improve fp16 convergence.'
        )

        tools.add_arguments_for_module(parser,
                                       models,
                                       argument_for_class='model',
                                       default='FlowNet2')

        tools.add_arguments_for_module(parser,
                                       losses,
                                       argument_for_class='loss',
                                       default='L1Loss')

        tools.add_arguments_for_module(parser,
                                       torch.optim,
                                       argument_for_class='optimizer',
                                       default='Adam',
                                       skip_params=['params'])

        tools.add_arguments_for_module(
            parser,
            datasets,
            argument_for_class='training_dataset',
            default='MpiSintelFinal',
            skip_params=['is_cropped'],
            parameter_defaults={'root': './MPI-Sintel/flow/training'})

        tools.add_arguments_for_module(parser,
                                       datasets,
                                       argument_for_class='validation_dataset',
                                       default='MpiSintelClean',
                                       skip_params=['is_cropped'],
                                       parameter_defaults={
                                           'root':
                                           './MPI-Sintel/flow/training',
                                           'replicates': 1
                                       })

        tools.add_arguments_for_module(parser,
                                       datasets,
                                       argument_for_class='inference_dataset',
                                       default='MpiSintelClean',
                                       skip_params=['is_cropped'],
                                       parameter_defaults={
                                           'root':
                                           './MPI-Sintel/flow/training',
                                           'replicates': 1
                                       })

        main_dir = os.path.dirname(os.path.realpath(__file__))
        os.chdir(main_dir)

        # Parse the official arguments
        with tools.TimerBlock("Parsing Arguments") as block:
            args = parser.parse_args()
            if args.number_gpus < 0:
                args.number_gpus = torch.cuda.device_count()

            # Get argument defaults (hastag #thisisahack)
            parser.add_argument('--IGNORE', action='store_true')
            defaults = vars(parser.parse_args(['--IGNORE']))

            # Print all arguments, color the non-defaults
            for argument, value in sorted(vars(args).items()):
                reset = colorama.Style.RESET_ALL
                color = reset if value == defaults[
                    argument] else colorama.Fore.MAGENTA
                block.log('{}{}: {}{}'.format(color, argument, value, reset))

            args.model_class = tools.module_to_dict(models)[args.model]
            args.optimizer_class = tools.module_to_dict(
                torch.optim)[args.optimizer]
            args.loss_class = tools.module_to_dict(losses)[args.loss]

            args.training_dataset_class = tools.module_to_dict(datasets)[
                args.training_dataset]
            args.validation_dataset_class = tools.module_to_dict(datasets)[
                args.validation_dataset]
            args.inference_dataset_class = tools.module_to_dict(datasets)[
                args.inference_dataset]

            args.cuda = not args.no_cuda and torch.cuda.is_available()
            args.current_hash = subprocess.check_output(
                ["git", "rev-parse", "HEAD"]).rstrip()
            args.log_file = join(args.save, 'args.txt')

            # dict to collect activation gradients (for training debug purpose)
            args.grads = {}

            if args.inference:
                args.skip_validation = True
                args.skip_training = True
                args.total_epochs = 1
                args.inference_dir = "{}/inference".format(args.save)

        print('Source Code')
        print(('  Current Git Hash: {}\n'.format(args.current_hash)))

        # Change the title for `top` and `pkill` commands
        setproctitle.setproctitle(args.save)

        # Dynamically load the dataset class with parameters passed in via "--argument_[param]=[value]" arguments
        with tools.TimerBlock("Initializing Datasets") as block:
            args.effective_batch_size = args.batch_size * args.number_gpus
            args.effective_inference_batch_size = args.inference_batch_size * args.number_gpus
            args.effective_number_workers = args.number_workers * args.number_gpus
            gpuargs = {
                'num_workers': args.effective_number_workers,
                'pin_memory': True,
                'drop_last': True
            } if args.cuda else {}
            inf_gpuargs = gpuargs.copy()
            inf_gpuargs['num_workers'] = args.number_workers

            if exists(args.training_dataset_root):
                train_dataset = args.training_dataset_class(
                    args, True,
                    **tools.kwargs_from_args(args, 'training_dataset'))
                block.log('Training Dataset: {}'.format(args.training_dataset))
                block.log('Training Input: {}'.format(' '.join([
                    str([d for d in x.size()]) for x in train_dataset[0][0]
                ])))
                block.log('Training Targets: {}'.format(' '.join([
                    str([d for d in x.size()]) for x in train_dataset[0][1]
                ])))
                train_loader = DataLoader(train_dataset,
                                          batch_size=args.effective_batch_size,
                                          shuffle=True,
                                          **gpuargs)

            if exists(args.validation_dataset_root):
                validation_dataset = args.validation_dataset_class(
                    args, True,
                    **tools.kwargs_from_args(args, 'validation_dataset'))
                block.log('Validation Dataset: {}'.format(
                    args.validation_dataset))
                block.log('Validation Input: {}'.format(' '.join([
                    str([d for d in x.size()])
                    for x in validation_dataset[0][0]
                ])))
                block.log('Validation Targets: {}'.format(' '.join([
                    str([d for d in x.size()])
                    for x in validation_dataset[0][1]
                ])))
                validation_loader = DataLoader(
                    validation_dataset,
                    batch_size=args.effective_batch_size,
                    shuffle=False,
                    **gpuargs)

            if exists(args.inference_dataset_root):
                inference_dataset = args.inference_dataset_class(
                    args, False,
                    **tools.kwargs_from_args(args, 'inference_dataset'))
                block.log('Inference Dataset: {}'.format(
                    args.inference_dataset))
                block.log('Inference Input: {}'.format(' '.join([
                    str([d for d in x.size()]) for x in inference_dataset[0][0]
                ])))
                block.log('Inference Targets: {}'.format(' '.join([
                    str([d for d in x.size()]) for x in inference_dataset[0][1]
                ])))
                inference_loader = DataLoader(
                    inference_dataset,
                    batch_size=args.effective_inference_batch_size,
                    shuffle=False,
                    **inf_gpuargs)

        # Dynamically load model and loss class with parameters passed in via "--model_[param]=[value]" or "--loss_[param]=[value]" arguments
        with tools.TimerBlock("Building {} model".format(args.model)) as block:

            class ModelAndLoss(nn.Module):
                def __init__(self, args):
                    super(ModelAndLoss, self).__init__()
                    kwargs = tools.kwargs_from_args(args, 'model')
                    self.model = args.model_class(args, **kwargs)
                    kwargs = tools.kwargs_from_args(args, 'loss')
                    self.loss = args.loss_class(args, **kwargs)

                def forward(self, data, target, inference=False):
                    output = self.model(data)

                    loss_values = self.loss(output, target)

                    if not inference:
                        return loss_values
                    else:
                        return loss_values, output

            model_and_loss = ModelAndLoss(args)

            block.log('Effective Batch Size: {}'.format(
                args.effective_batch_size))
            block.log('Number of parameters: {}'.format(
                sum([
                    p.data.nelement() if p.requires_grad else 0
                    for p in model_and_loss.parameters()
                ])))

            # assing to cuda or wrap with dataparallel, model and loss
            if args.cuda and (args.number_gpus > 0) and args.fp16:
                block.log('Parallelizing')
                model_and_loss = nn.parallel.DataParallel(
                    model_and_loss, device_ids=list(range(args.number_gpus)))

                block.log('Initializing CUDA')
                model_and_loss = model_and_loss.cuda().half()
                torch.cuda.manual_seed(args.seed)
                param_copy = [
                    param.clone().type(torch.cuda.FloatTensor).detach()
                    for param in model_and_loss.parameters()
                ]

            elif args.cuda and args.number_gpus > 0:
                block.log('Initializing CUDA')
                model_and_loss = model_and_loss.cuda()
                block.log('Parallelizing')
                model_and_loss = nn.parallel.DataParallel(
                    model_and_loss, device_ids=list(range(args.number_gpus)))
                torch.cuda.manual_seed(args.seed)

            else:
                block.log('CUDA not being used')
                torch.manual_seed(args.seed)

            # Load weights if needed, otherwise randomly initialize
            if args.resume and os.path.isfile(args.resume):
                block.log("Loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume)
                if not args.inference:
                    args.start_epoch = checkpoint['epoch']
                best_err = checkpoint['best_EPE']
                model_and_loss.module.model.load_state_dict(
                    checkpoint['state_dict'])
                block.log("Loaded checkpoint '{}' (at epoch {})".format(
                    args.resume, checkpoint['epoch']))

            elif args.resume and args.inference:
                block.log("No checkpoint found at '{}'".format(args.resume))
                quit()

            else:
                block.log("Random initialization")

            block.log("Initializing save directory: {}".format(args.save))
            if not os.path.exists(args.save):
                os.makedirs(args.save)

            train_logger = SummaryWriter(log_dir=os.path.join(
                args.save, 'train'),
                                         comment='training')
            validation_logger = SummaryWriter(log_dir=os.path.join(
                args.save, 'validation'),
                                              comment='validation')

        # Dynamically load the optimizer with parameters passed in via "--optimizer_[param]=[value]" arguments
        with tools.TimerBlock("Initializing {} Optimizer".format(
                args.optimizer)) as block:
            kwargs = tools.kwargs_from_args(args, 'optimizer')
            if args.fp16:
                optimizer = args.optimizer_class(
                    [p for p in param_copy if p.requires_grad], **kwargs)
            else:
                optimizer = args.optimizer_class([
                    p for p in model_and_loss.parameters() if p.requires_grad
                ], **kwargs)
            for param, default in list(kwargs.items()):
                block.log("{} = {} ({})".format(param, default, type(default)))

        # Log all arguments to file
        for argument, value in sorted(vars(args).items()):
            block.log2file(args.log_file, '{}: {}'.format(argument, value))
        return args
コード例 #9
0
def infer_flownet(in_path, out_path, reverse, downscale_factor=1):
    args = SimpleNamespace(model="FlowNet2",
                           reverse=reverse,
                           downscale_factor=downscale_factor,
                           start_epoch=1,
                           total_epochs=10000,
                           batch_size=8,
                           train_n_batches=-1,
                           crop_size=[256, 256],
                           gradient_clip=None,
                           schedule_lr_frequency=0,
                           schedule_lr_fraction=10,
                           rgb_max=255.,
                           number_workers=8,
                           number_gpus=-1,
                           no_cuda=False,
                           seed=1,
                           name='run',
                           in_path=in_path,
                           save=out_path,
                           validation_frequency=5,
                           validation_n_batches=-1,
                           render_validation=False,
                           inference=True,
                           inference_visualize=True,
                           inference_size=[-1, -1],
                           inference_batch_size=1,
                           inference_n_batches=-1,
                           save_flow=True,
                           resume='./FlowNet2_checkpoint.pth.tar',
                           log_frequency=1,
                           skip_training=False,
                           skip_validation=False,
                           fp16=False,
                           fp16_scale=1024.,
                           loss='L1Loss',
                           optimizer='Adam',
                           training_dataset='MpiSintelFinal',
                           root='./MPI-Sintel/flow/training',
                           validation_dataset='MpiSintelClean',
                           inference_dataset='MpiSintelClean',
                           IGNORE=False)
    print(args.in_path)
    main_dir = os.path.dirname(os.path.realpath(__file__))
    os.chdir(main_dir)

    # Parse the official arguments
    with tools.TimerBlock("Parsing Arguments") as block:
        if args.number_gpus < 0: args.number_gpus = torch.cuda.device_count()

        args.model_class = tools.module_to_dict(models)[args.model]
        args.optimizer_class = tools.module_to_dict(
            torch.optim)[args.optimizer]
        args.loss_class = tools.module_to_dict(losses)[args.loss]

        args.cuda = not args.no_cuda and torch.cuda.is_available()
        args.current_hash = subprocess.check_output(
            ["git", "rev-parse", "HEAD"]).rstrip()

        # dict to collect activation gradients (for training debug purpose)
        args.grads = {}

        if args.inference:
            args.skip_validation = True
            args.skip_training = True
            args.total_epochs = 1
            args.inference_dir = "{}/inference".format(args.save)

    print('Source Code')
    print(('  Current Git Hash: {}\n'.format(args.current_hash)))

    # Change the title for `top` and `pkill` commands
    setproctitle.setproctitle(args.save)

    # Dynamically load the dataset class with parameters passed in via "--argument_[param]=[value]" arguments
    with tools.TimerBlock("Initializing Datasets") as block:
        args.effective_batch_size = args.batch_size * args.number_gpus
        args.effective_inference_batch_size = args.inference_batch_size * args.number_gpus
        args.effective_number_workers = args.number_workers * args.number_gpus
        gpuargs = {
            'num_workers': args.effective_number_workers,
            'pin_memory': True,
            'drop_last': True
        } if args.cuda else {}
        inf_gpuargs = gpuargs.copy()
        inf_gpuargs['num_workers'] = args.number_workers

        inference_dataset = datasets.ImagesFromFolder(args,
                                                      is_cropped=False,
                                                      is_reversed=args.reverse,
                                                      root=args.in_path)
        block.log('Inference Input: {}'.format(' '.join(
            [str([d for d in x.size()]) for x in inference_dataset[0][0]])))
        block.log('Inference Targets: {}'.format(' '.join(
            [str([d for d in x.size()]) for x in inference_dataset[0][1]])))
        inference_loader = DataLoader(
            inference_dataset,
            batch_size=args.effective_inference_batch_size,
            shuffle=False,
            **inf_gpuargs)

    # Dynamically load model and loss class with parameters passed in via "--model_[param]=[value]" or "--loss_[param]=[value]" arguments
    with tools.TimerBlock("Building {} model".format(args.model)) as block:

        class ModelAndLoss(nn.Module):
            def __init__(self, args):
                super(ModelAndLoss, self).__init__()
                kwargs = tools.kwargs_from_args(args, 'model')
                self.model = args.model_class(args, **kwargs)
                kwargs = tools.kwargs_from_args(args, 'loss')
                self.loss = args.loss_class(args, **kwargs)

            def forward(self, data, target, inference=False):
                output = self.model(data)

                loss_values = self.loss(output, target)

                if not inference:
                    return loss_values
                else:
                    return loss_values, output

        model_and_loss = ModelAndLoss(args)

        # assing to cuda or wrap with dataparallel, model and loss
        if args.cuda and (args.number_gpus > 0) and args.fp16:
            model_and_loss = nn.parallel.DataParallel(
                model_and_loss, device_ids=list(range(args.number_gpus)))
            model_and_loss = model_and_loss.cuda().half()
            torch.cuda.manual_seed(args.seed)
        elif args.cuda and args.number_gpus > 0:
            model_and_loss = model_and_loss.cuda()
            model_and_loss = nn.parallel.DataParallel(
                model_and_loss, device_ids=list(range(args.number_gpus)))
            torch.cuda.manual_seed(args.seed)
        else:
            block.log('CUDA not being used')
            torch.manual_seed(args.seed)

        # Load weights if needed, otherwise randomly initialize
        if args.resume and os.path.isfile(args.resume):
            checkpoint = torch.load(args.resume)
            if not args.inference:
                args.start_epoch = checkpoint['epoch']
            model_and_loss.module.model.load_state_dict(
                checkpoint['state_dict'])
        elif args.resume and args.inference:
            block.log("No checkpoint found at '{}'".format(args.resume))
            quit()
        else:
            block.log("Random initialization")

        if not os.path.exists(args.save):
            os.makedirs(args.save)

    # Reusable function for inference
    def inference(args, data_loader, model, offset=0):
        model.eval()
        if args.save_flow or args.render_validation:
            flow_folder = out_path  # "./output/flo_rev" if args.reverse else "./output/flo"
            if not os.path.exists(flow_folder):
                os.makedirs(flow_folder)

        # visualization folder
        if args.inference_visualize:
            flow_vis_folder = out_path + "/" + "png/"
            if not os.path.exists(flow_vis_folder):
                os.makedirs(flow_vis_folder)

        args.inference_n_batches = np.inf if args.inference_n_batches < 0 else args.inference_n_batches

        progress = tqdm(data_loader,
                        ncols=100,
                        total=np.minimum(len(data_loader),
                                         args.inference_n_batches),
                        desc='Inferencing ',
                        leave=True,
                        position=offset)

        statistics = []
        total_loss = 0
        ph, pw = inference_dataset.ph, inference_dataset.pw
        for batch_idx, (data, target) in enumerate(progress):
            if args.cuda:
                data, target = [d.cuda(non_blocking=True) for d in data
                                ], [t.cuda(non_blocking=True) for t in target]
            data, target = [Variable(d)
                            for d in data], [Variable(t) for t in target]

            # when ground-truth flows are not available for inference_dataset,
            # the targets are set to all zeros. thus, losses are actually L1 or L2 norms of compute optical flows,
            # depending on the type of loss norm passed in
            with torch.no_grad():
                losses, output = model(data[0], target[0], inference=True)

            losses = [torch.mean(loss_value) for loss_value in losses]
            loss_val = losses[0]  # Collect first loss for weight update
            total_loss += loss_val.item()
            loss_values = [v.item() for v in losses]

            statistics.append(loss_values)
            # import IPython; IPython.embed()
            if args.save_flow or args.render_validation:
                for i in range(args.inference_batch_size):
                    _pflow = output[i].data.cpu().numpy().transpose(1, 2, 0)
                    if ph != 0:
                        _pflow = _pflow[ph:-ph, :, :]
                    if pw != 0:
                        _pflow = _pflow[:, pw:-pw, :]
                    flow_utils.writeFlow(
                        join(
                            flow_folder, '%06d.flo' %
                            (batch_idx * args.inference_batch_size + i)),
                        _pflow)

                    # You can comment out the plt block in visulize_flow_file() for real-time visualization
                    if args.inference_visualize:
                        flow_utils.visulize_flow_file(
                            join(
                                flow_folder, '%06d.flo' %
                                (batch_idx * args.inference_batch_size + i)),
                            flow_vis_folder)

            progress.update(1)
            if batch_idx == (args.inference_n_batches - 1):
                break
        progress.close()
        return

    progress = tqdm(list(range(args.start_epoch, args.total_epochs + 1)),
                    miniters=1,
                    ncols=100,
                    desc='Overall Progress',
                    leave=True,
                    position=0)
    offset = 1

    for _ in progress:
        inference(args=args,
                  data_loader=inference_loader,
                  model=model_and_loss,
                  offset=offset)
        offset += 1
    print("\n")
コード例 #10
0
    tools.add_arguments_for_module(parser,
                                   datasets,
                                   argument_for_class='inference_dataset',
                                   default='MpiSintelClean',
                                   skip_params=['is_cropped'],
                                   parameter_defaults={
                                       'root': './MPI-Sintel/flow/training',
                                       'replicates': 1
                                   })

    main_dir = os.path.dirname(os.path.realpath(__file__))
    os.chdir(main_dir)

    # Parse the official arguments
    with tools.TimerBlock("Parsing Arguments") as block:
        args = parser.parse_args()
        if args.number_gpus < 0: args.number_gpus = torch.cuda.device_count()

        # Get argument defaults (hastag #thisisahack)
        parser.add_argument('--IGNORE', action='store_true')
        defaults = vars(parser.parse_args(['--IGNORE']))

        # Print all arguments, color the non-defaults
        for argument, value in sorted(vars(args).items()):
            reset = colorama.Style.RESET_ALL
            color = reset if value == defaults[
                argument] else colorama.Fore.MAGENTA
            block.log('{}{}: {}{}'.format(color, argument, value, reset))

        args.model_class = tools.module_to_dict(models)[args.model]