コード例 #1
0
	def train(self):

		print 'Total name :' 

		nb_epochs = self.args['epochs']
		time_spent = [0 for _ in range(10)]
		
		with tf.Graph().as_default() as graph:
			config_ = tf.ConfigProto()
			config_.gpu_options.allow_growth = True
			config_.allow_soft_placement = True

			with tf.Session(graph=graph, config=config_).as_default() as sess:

				tfds = TFDataset(**self.args)

				additional_args = {
					"mix": tfds.next_mix,
					"non_mix": tfds.next_non_mix,
					"ind": tfds.next_ind,
					"pipeline": True,
					"tot_speakers" : 251
				}

				self.args.update(additional_args)

				self.build()


				nb_batches_train = tfds.length(tfds.TRAIN)#894 # tfds.length('train')
				nb_batches_test = tfds.length(tfds.TEST)#50 #tfds.length('test')
				nb_batches_valid = tfds.length(tfds.VALID)#50#tfds.length('valid')

				print 'BATCHES'
				print nb_batches_train, nb_batches_test, nb_batches_valid

				feed_dict_train = {tfds.handle: tfds.get_handle(tfds.TRAIN)}
				feed_dict_valid = {tfds.handle: tfds.get_handle(tfds.VALID)}
				feed_dict_test = {tfds.handle: tfds.get_handle(tfds.TEST)}

				best_validation_cost = 1e100

				t1 = time.time()

				step = 0

				for epoch in range(nb_epochs):
					sess.run(tfds.training_initializer)

					for b in range(nb_batches_train):

						t = time.time()
						# m =  self.model.test(feed_dict_train)
						# print m

						c = self.model.train(feed_dict_train, step)
								
						if (step+1)%self.args['validation_step'] == 0:
							t = time.time()

							sess.run(tfds.validation_initializer)

							# Compute validation mean cost with batches to avoid memory problems
							costs = []

							for b_v in range(nb_batches_valid):
								cost = self.model.valid_batch(feed_dict_valid,step)
								costs.append(cost)

							valid_cost = np.mean(costs)
							self.model.add_valid_summary(valid_cost, step)

							# Save the model if it is better:
							if valid_cost < best_validation_cost:
								best_validation_cost = valid_cost # Save as new lowest cost
								best_path = self.model.save(step)
								print 'Save best model with :', best_validation_cost

							t_f = time.time()
							print 'Validation set tested in ', t_f - t, ' seconds'
							print 'Validation set: ', valid_cost

						time_spent = time_spent[1:] +[time.time()-t1]
						avg =  sum(time_spent)/len(time_spent)
						print 'Epoch #', epoch+1,'/', nb_epochs,' Batch #', b+1,'/',nb_batches_train,'in', avg,'sec loss=', c \
							, ' ETA = ', getETA(avg, nb_batches_train, b+1, nb_epochs, epoch+1)

						t1 = time.time()

						step += 1

				print 'Best model with Validation:  ', best_validation_cost
				print 'Path = ', best_path

				# Load the best model on validation set and test it
				self.model.restore_last_checkpoint()
				
				sess.run(tfds.test_initializer)

				for b_t in range(nb_batches_test):
					cost = self.model.test_batch(feed_dict_test)
					costs.append(cost)
				print 'Test cost = ', np.mean(costs)
コード例 #2
0
ファイル: dpcl_finetuning.py プロジェクト: templeblock/das
init = model.non_initialized_variables()

model.sess.run(init)

print 'Total name :' 
print model.runID

# nb_iterations = 500
mixed_data.adjust_split_size_to_batchsize(batch_size)
nb_batches = mixed_data.nb_batches(batch_size)
nb_epochs = 1

time_spent = [ 0 for _ in range(5)]

for epoch in range(nb_epochs):
	for b in range(nb_batches):
		X_non_mix, X_mix, _ = mixed_data.get_batch(batch_size)
		t = time.time()
		c = model.train(X_mix, X_non_mix, learning_rate, b)
		t_f = time.time()
		time_spent = time_spent[1:] +[t_f-t]

		print 'Step #'  ,b,' loss=', c ,' ETA = ', getETA(sum(time_spent)/float(np.count_nonzero(time_spent))
			, nb_batches, b, nb_epochs, epoch)
		# print 'length of data =', X_non_mix.shape ,'step ', b+1, mixed_data.datasets[0].index_item_split, mixed_data.selected_split_size(),getETA(sum(time_spent)/float(np.count_nonzero(time_spent)), nb_batches, b, nb_epochs, epoch)

		if b%20 == 0: #cost_valid < cost_valid_min:
		    print 'DAS model saved at iteration number ', nb_batches*epoch + b,' with cost = ', c 
		    model.save(b)

コード例 #3
0
    def train(self):

        print 'Total name :'
        print self.model.runID

        nb_epochs = self.args['epochs']
        batch_size = self.args['batch_size']
        time_spent = [0 for _ in range(5)]
        nb_batches = self.dataset.nb_batch(batch_size)

        best_validation_cost = 1e100

        step = 0
        for epoch in range(nb_epochs):
            for b, (x_mix, x_non_mix, I) in enumerate(
                    self.dataset.get_batch(self.dataset.TRAIN, batch_size)):

                x_mix, x_non_mix, _, _ = normalize_mix(x_mix, x_non_mix)

                t = time.time()
                c = self.model.train(x_mix, x_non_mix, I, step)
                t_f = time.time()
                time_spent = time_spent[1:] + [t_f - t]

                print 'Epoch #', epoch+1,'Step #', step+1,' loss=', c \
                 , ' ETA = ', getETA(sum(time_spent)/float(np.count_nonzero(time_spent)) \
                 , nb_batches, b, nb_epochs, epoch)

                if step % self.args['validation_step'] == 0:
                    t = time.time()
                    # Compute validation mean cost with batches to avoid memory problems
                    costs = []
                    for x_mix_v, x_non_mix_v, I_v in self.dataset.get_batch(
                            self.dataset.VALID, batch_size):

                        x_mix_v, x_non_mix_v, _, _ = normalize_mix(
                            x_mix_v, x_non_mix_v)

                        cost = self.model.valid_batch(x_mix_v, x_non_mix_v,
                                                      I_v)
                        costs.append(cost)

                    valid_cost = np.mean(costs)
                    self.model.add_valid_summary(valid_cost, step)

                    # Save the model if it is better:
                    if valid_cost < best_validation_cost:
                        best_validation_cost = valid_cost  # Save as new lowest cost
                        best_path = self.model.save(step)
                        print 'Save best model with :', best_validation_cost

                    t_f = time.time()
                    print 'Validation set tested in ', t_f - t, ' seconds'
                    print 'Validation set: ', valid_cost

                step += 1

        print 'Best model with Validation:  ', best_validation_cost
        print 'Path = ', best_path

        # Load the best model on validation set and test it
        self.model.restore_last_checkpoint()

        for x_mix_t, x_non_mix_t, I_t in self.dataset.get_batch(
                self.dataset.TEST, batch_size):
            x_mix_t, x_non_mix_t, _, _ = normalize_mix(x_mix_t, x_non_mix_t)
            cost = self.model.valid_batch(x_mix_t, x_non_mix_t, I_t)
            costs.append(cost)
        print 'Test cost = ', np.mean(costs)