def __init__(self, voc_root_dir, voc_dir_ls, voc_names, class_num, batch_size, anchors, width=608, height=608, data_debug=False): self.data_dirs = [path.join(path.join(voc_root_dir, voc_dir), "JPEGImages") for voc_dir in voc_dir_ls] self.class_num = class_num # classify number self.batch_size = batch_size self.anchors = np.asarray(anchors).astype(np.float32).reshape([-1, 2]) / [width, height] #[9,2] print("anchors:\n", self.anchors) self.imgs_path = [] self.labels_path = [] self.num_batch = 0 # total batch number self.num_imgs = 0 # total number of images self.steps_per_epoch = 1 self.data_debug = data_debug self.width = width self.height = height self.names_dict = tools.word2id(voc_names) # dictionary of name to id # 初始化数据增强策略的参数 self.flip_img = 0.5 # probility of flip image self.is_flip = False # self.gray_img = 0.02 # probility to gray picture self.smooth_delta = 0.001 # label smooth delta self.erase_img = 0 # probility of random erase some area self.gasuss = 0.0 # probility of gasuss noise self.__init_args()
def __init__(self, voc_root_dir, voc_dir_ls, voc_names, class_num, batch_size, anchors, multi_scale_img=True, width=608, height=608): self.data_dirs = [path.join(path.join(voc_root_dir, voc_dir), "JPEGImages") for voc_dir in voc_dir_ls] # 数据文件路径 self.class_num = class_num # 分类数 self.batch_size = batch_size self.anchors = np.asarray(anchors).astype(np.float32).reshape([-1, 2]) / [width, height] #[9,2] print("anchors:\n", self.anchors) self.multi_scale_img = multi_scale_img # 多尺度缩放图片 self.imgs_path = [] self.labels_path = [] self.num_batch = 0 # 多少个 batch 了 self.num_imgs = 0 # 一共多少张图片 self.width = width self.height = height self.names_dict = tools.word2id(voc_names) # 名字到 id 的字典 # 初始化各项参数 self.__init_args()
def __init__(self, voc_root_dir, voc_dir_ls, voc_names, class_num, batch_size, anchors, agument, width=608, height=608, data_debug=False): self.data_dirs = [ path.join(path.join(voc_root_dir, voc_dir), "JPEGImages") for voc_dir in voc_dir_ls ] # 数据文件路径 self.class_num = class_num # 分类数 self.batch_size = batch_size self.anchors = np.asarray(anchors).astype(np.float32).reshape( [-1, 2]) / [width, height] #[9,2] print("anchors:\n", self.anchors) self.imgs_path = [] self.labels_path = [] self.num_batch = 0 # 多少个 batch 了 self.num_imgs = 0 # 一共多少张图片 self.data_debug = data_debug self.width = width self.height = height self.agument = agument # data agument strategy self.smooth_delta = 0.01 # label smooth delta self.names_dict = tools.word2id(voc_names) # 名字到 id 的字典 # 初始化各项参数 self.__init_args()
def __init__(self, voc_root_dir, voc_dir_ls, voc_names, class_num, batch_size, anchors, agument, width=608, height=608, data_debug=False): self.data_dirs = [path.join(path.join(voc_root_dir, voc_dir), "JPEGImages") for voc_dir in voc_dir_ls] self.class_num = class_num # classify number self.batch_size = batch_size self.anchors = np.asarray(anchors).astype(np.float32).reshape([-1, 2]) / [width, height] #[9,2] print("anchors:\n", self.anchors) self.imgs_path = [] self.labels_path = [] self.num_batch = 0 # total batch number self.num_imgs = 0 # total number of images self.data_debug = data_debug self.width = width self.height = height self.agument = agument # data agument strategy self.smooth_delta = 0.01 # label smooth delta self.names_dict = tools.word2id(voc_names) # dictionary of name to id self.__init_args()
def __init__(self, voc_root_dir, voc_names_file, class_num, batch_size, anchors, is_tiny=False, size=416): ''' is_tiny:the flag that loading the yolo_tiny's data ''' Log.add_log("message:voc_root_dir '" + str(voc_root_dir) + "', batch_size '" + str(batch_size) + "', size '" + str(size) + "'") self.data_dirs = [ path.join(voc_dir, "JPEGImages") for voc_dir in voc_root_dir ] self.label_dirs = [ path.join(voc_dir, "Annotations") for voc_dir in voc_root_dir ] self.class_num = class_num # classify number self.batch_size = batch_size self.anchors = anchors self.debug_img = False # show the image self.is_tiny = is_tiny # load data of yolo_tiny self.imgs_path = [] self.labels_path = [] self.num_batch = 0 # total batch number self.num_imgs = 0 # total number of images self.size = size self.names_dict = tools.word2id( voc_names_file) # dictionary of name to id self.steps_per_epoch = 1000 # ################## data augment ################## self.flip = Flip() self.flip_img = 0.5 # probility of flip image self.gray_img = 0.1 # probility to gray picture self.label_smooth = 0.001 # label smooth delta # random erase self.erase = Erase(max_erase=5, max_w=30, max_h=30) self.erase_img = 0.5 # probility of random erase some area # color enhance self.color_enhance = Color_enhancement() # rotate : not use self.rotate_img = 0.0 # probility to rorate the image # translate self.translate = Translate(self.size, self.size, pad_thresh=30) self.trans_img = 0.5 # probility of translate the image self.gasuss = 0.0 # gasuss norse # initial all parameters self.__init_args()