def process_info(self, data, det_thresh=0.3, match_thres=0.5, max_depth=150, _nms=True, _valid=True): """return the valid, matched index of bbox, and corresponding tracking ids, and corresponding info""" bbox = data['rois_pd'] if len(bbox) > 0: if _nms: keep = tu.nms_cpu(bbox, 0.3) else: keep = np.arange(0, bbox.shape[0]) bbox = bbox[keep] res_feat = data['feature'][keep] res_dim = data['dim_pd'][keep] res_alpha = data['alpha_pd'][keep] res_depth = data['depth_pd'][keep] res_cen = data['center_pd'][keep] gt_boxes = data['rois_gt'] dim_gt = data['dim_gt'] alpha_gt = data['alpha_gt'] depth_gt = data['depth_gt'] cen_gt = data['center_gt'] ignores = data['ignore'] tracking_ids = data['tid_gt'] # Ignore if gt is max_depth meters away ignores[depth_gt > max_depth] = 1 # Prune bbox if prediction is max_depth meters away if len(bbox) > 0: bbox = bbox[res_depth < max_depth] res_feat = res_feat[res_depth < max_depth] res_dim = res_dim[res_depth < max_depth] res_alpha = res_alpha[res_depth < max_depth] res_cen = res_cen[res_depth < max_depth] res_depth = res_depth[res_depth < max_depth] else: # print('*** Pure detecton, do not get pose information here!') res_feat = np.zeros([bbox.shape[0], self.feat_dim]) res_dim = np.ones([bbox.shape[0], 3]) res_alpha = np.ones([bbox.shape[0]]) res_depth = np.ones([bbox.shape[0]]) res_cen = np.zeros([bbox.shape[0], 2]) # (x1, y1, x2, y2, conf) if gt_boxes.shape[0] > 0: gt_boxes = gt_boxes[:, 0:4] self.frame_annotation = tu.build_frame_annotation( gt_boxes, ignores, tracking_ids, dim_gt, alpha_gt, depth_gt, cen_gt, self.cam_calib, self.cam_rot, self.cam_coord) gt_boxes_ignored = [gb for i, gb in enumerate(gt_boxes) if ignores[i]] if _valid: valid_bbox_ind = [] for i in range(bbox.shape[0]): box = bbox[i, :4] score = bbox[i, 4] if score > det_thresh: # if valid save = True for bg in gt_boxes_ignored: if tu.compute_iou(box, bg) > match_thres: save = False break if save: valid_bbox_ind.append(i) else: valid_bbox_ind = np.arange(0, bbox.shape[0]) valid_bbox = bbox[valid_bbox_ind] valid_feat = res_feat[valid_bbox_ind] valid_dim = res_dim[valid_bbox_ind] valid_alpha = res_alpha[valid_bbox_ind].reshape(-1, 1) valid_depth = res_depth[valid_bbox_ind].reshape(-1, 1) valid_cen = res_cen[valid_bbox_ind] valid_rots = np.zeros_like(valid_alpha) for idx, (alpha, det, center) in enumerate(zip(valid_alpha, valid_bbox, valid_cen)): valid_rots[idx] = tu.alpha2rot_y(alpha, center[0] - self.W // 2, FOCAL_LENGTH=self.cam_calib[0][0]) # now build the world 3d coordinate valid_worldcoords = tu.point3dcoord(valid_cen, valid_depth, self.cam_calib, self.cam_pose) return valid_bbox, valid_feat, valid_dim, valid_alpha, valid_depth, \ valid_cen, valid_rots, valid_worldcoords
def load_image_sample(self, idx): frame = json.load(open(self.label_name[idx], 'r')) pd_name = self.label_name[idx].replace('data', 'output') pd_name = pd_name.replace('label', 'pred') if os.path.isfile(pd_name): frame_pd = json.load(open(pd_name, 'r')) else: # No prediction json file found frame_pd = {'prediction': []} n_box = len(frame['labels']) if n_box > self.n_box_limit: # print("n_box ({}) exceed the limit {}, clip up to # limit.".format(n_box, self.n_box_limit)) n_box = self.n_box_limit # Frame level annotations im_path = os.path.join(self.IM_PATH, frame['name']) endvid = int(idx + 1 in self.seq_accum) cam_rot = np.array(frame['extrinsics']['rotation']) cam_loc = np.array(frame['extrinsics']['location']) cam_calib = np.array(frame['intrinsics']['cali']) #cam_focal = np.array(frame['intrinsics']['focal']) #cam_near_clip = np.array(frame['intrinsics']['nearClip']) #cam_fov_h = np.array(frame['intrinsics']['fov']) pose = tu.Pose(cam_loc, cam_rot, not self.use_kitti) # Object level annotations if self.phase in ['train', 'val']: labels = frame['labels'][:n_box] predictions = frame_pd['prediction'][:n_box] # Random shuffle data np.random.seed(777) np.random.shuffle(labels) else: labels = frame['labels'] predictions = frame_pd['prediction'] rois_pd = bh.get_box2d_array(predictions).astype(float) rois_gt = bh.get_box2d_array(labels).astype(float) tid = bh.get_label_array(labels, ['id'], (0)).astype(int) # Dim: H, W, L dim = bh.get_label_array(labels, ['box3d', 'dimension'], (0, 3)).astype(float) # Alpha: -pi ~ pi alpha = bh.get_label_array(labels, ['box3d', 'alpha'], (0)).astype(float) # Location in cam coord: x-right, y-down, z-front location = bh.get_label_array(labels, ['box3d', 'location'], (0, 3)).astype(float) # Center # f_x, s, cen_x, ext_x # 0, f_y, cen_y, ext_y # 0, 0, 1, ext_z ext_loc = np.hstack([location, np.ones([len(location), 1])]) # (B, 4) proj_loc = ext_loc.dot(cam_calib.T) # (B, 4) dot (3, 4).T => (B, 3) center_gt = proj_loc[:, :2] / proj_loc[:, 2:3] # normalize if self.phase in ['train', 'val']: # For depth training #center_pd = center_gt.copy() # For center training cenx = (rois_gt[:, 0:1] + rois_gt[:, 2:3]) / 2 ceny = (rois_gt[:, 1:2] + rois_gt[:, 3:4]) / 2 center_pd = np.concatenate([cenx, ceny], axis=1) else: center_pd = bh.get_cen_array(predictions) # Depth depth = np.maximum(0, location[:, 2]) ignore = bh.get_label_array(labels, ['attributes', 'ignore'], (0)).astype(int) # Get n_box_limit batch rois_gt = np.vstack([rois_gt, np.zeros([self.n_box_limit, 5])])[:self.n_box_limit] if self.phase in ['train', 'val']: rois_pd = rois_gt.copy() rois_pd[:, :4] += np.random.rand(rois_gt.shape[0], 4) * 3 else: rois_pd = np.vstack([rois_pd, np.zeros([self.n_box_limit, 5])])[:self.n_box_limit] tid = np.hstack([tid, np.zeros(self.n_box_limit)])[:self.n_box_limit] alpha = np.hstack([alpha, np.zeros(self.n_box_limit)])[:self.n_box_limit] depth = np.hstack([depth, np.zeros(self.n_box_limit)])[:self.n_box_limit] center_pd = np.vstack([center_pd, np.zeros([self.n_box_limit, 2])])[:self.n_box_limit] center_gt = np.vstack([center_gt, np.zeros([self.n_box_limit, 2])])[:self.n_box_limit] dim = np.vstack([dim, np.zeros([self.n_box_limit, 3])])[:self.n_box_limit] ignore = np.hstack([ignore, np.zeros(self.n_box_limit)])[:self.n_box_limit] # objects center in the world coordinates loc_gt = tu.point3dcoord(center_gt, depth, cam_calib, pose) # Load images img = cv2.imread(im_path) assert img is not None, "Cannot read {}".format(im_path) h, w, _ = img.shape p_h = self.H - h p_w = self.W - w assert p_h >= 0, "target hight - image hight = {}".format(p_h) assert p_w >= 0, "target width - image width = {}".format(p_w) img = copy_border_reflect(img, p_h, p_w) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_patch = np.rollaxis(img, 2, 0) img_patch = img_patch.astype(float) / 255.0 # Normalize if self.is_normalizing: img_patch = (img_patch - self.mean) / self.std bin_cls = np.zeros((self.n_box_limit, 2)) bin_res = np.zeros((self.n_box_limit, 2)) for i in range(n_box): if alpha[i] < np.pi / 6. or alpha[i] > 5 * np.pi / 6.: bin_cls[i, 0] = 1 bin_res[i, 0] = alpha[i] - (-0.5 * np.pi) if alpha[i] > -np.pi / 6. or alpha[i] < -5 * np.pi / 6.: bin_cls[i, 1] = 1 bin_res[i, 1] = alpha[i] - (0.5 * np.pi) box_info = { 'im_path': im_path, 'rois_pd': torch.from_numpy(rois_pd).float(), 'rois_gt': torch.from_numpy(rois_gt).float(), 'dim_gt': torch.from_numpy(dim).float(), 'bin_cls_gt': torch.from_numpy(bin_cls).long(), 'bin_res_gt': torch.from_numpy(bin_res).float(), 'alpha_gt': torch.from_numpy(alpha).float(), 'depth_gt': torch.from_numpy(depth).float(), 'cen_pd': torch.from_numpy(center_pd).float(), 'cen_gt': torch.from_numpy(center_gt).float(), 'loc_gt': torch.from_numpy(loc_gt).float(), 'tid_gt': torch.from_numpy(tid).int(), 'ignore': torch.from_numpy(ignore).int(), 'n_box': n_box, 'endvid': endvid, 'cam_calib': torch.from_numpy(cam_calib).float(), 'cam_rot': torch.from_numpy(pose.rotation).float(), 'cam_loc': torch.from_numpy(pose.position).float(), } return torch.from_numpy(img_patch).float(), box_info
def update(self, data): # frame information here ret = [] self.frame_count += 1 self.cam_rot = data['cam_rot'].squeeze() # In rad self.cam_coord = data['cam_loc'].squeeze() if self.frame_count == 1: self.init_coord = self.cam_coord.copy() self.cam_coord -= self.init_coord self.cam_calib = data['cam_calib'].squeeze() self.cam_pose = tu.Pose(self.cam_coord, self.cam_rot) # process information dets, feats, dims, alphas, single_depths, cens, roty, world_coords = \ self.process_info( data, det_thresh=self.det_thresh, max_depth=self.max_depth, _nms=self.dataset=='carla', _valid=self.dataset=='carla', _center=self.dataset=='kitti' ) # save to current frame self.current_frame = { 'bbox': dets, 'feat': feats, 'dim': dims, 'alpha': alphas, # in deg 'roty': roty, # in rad 'depth': single_depths, 'center': cens, 'location': world_coords, 'n_obj': len(alphas), } # Prediction # get predicted locations from existing trackers. trk_locs = np.zeros((len(self.trackers), 3)) trk_dets = np.zeros((len(self.trackers), 5)) trk_dims = np.zeros((len(self.trackers), 3)) trk_rots = np.zeros((len(self.trackers), 1)) trk_feats = np.zeros((len(self.trackers), self.feat_dim)) for t in range(len(trk_locs)): trk_locs[t] = self.trackers[t].predict().squeeze() trk_dets[t] = self.trackers[t].det trk_dims[t] = self.trackers[t].dim trk_rots[t] = self.trackers[t].rot trk_feats[t] = self.trackers[t].feat trk_cen = tu.projection3d(self.cam_calib, self.cam_pose, trk_locs[t:t+1]) self.trackers[t].cen = trk_cen.squeeze() # Generate 2D boxes from 3D estimated location trkboxes, trkdepths, trkpoints = tu.construct2dlayout(trk_locs, trk_dims, trk_rots, self.cam_calib, self.cam_pose) detboxes, detdepths, detpoints = tu.construct2dlayout(world_coords, dims, roty, self.cam_calib, self.cam_pose) # Association idxes_order = np.argsort(trkdepths) boxes_order = [] for idx in idxes_order: if self.use_occ: # Check if trk box has occluded by others if boxes_order != []: # Sort boxes box = trkboxes[idx] ious = [] for bo in boxes_order: ious.append(tu.compute_iou(bo, box)) # Check if occluded self.trackers[idx].occ = (max(ious) > self.occ_iou_thresh) boxes_order.append(trkboxes[idx]) trk_depths_order = np.array(trkdepths)[idxes_order] trk_feats_order = trk_feats[idxes_order] trk_dim_order = trk_dims[idxes_order] coord_affinity = np.zeros((len(detboxes), len(boxes_order)), dtype=np.float32) feat_affinity = np.zeros((len(detboxes), len(boxes_order)), dtype=np.float32) if self.use_occ: for d, det in enumerate(detboxes): if len(boxes_order) != 0: coord_affinity[d, :] = \ tu.compute_boxoverlap_with_depth( dets[d], [det[0], det[1], det[2], det[3], 1.0], detdepths[d], dims[d], trk_dets[idxes_order], boxes_order, trk_depths_order, trk_dim_order, H=self.H, W=self.W) else: for d, det in enumerate(detboxes): for t, trk in enumerate(boxes_order): coord_affinity[d, t] += tu.compute_iou(trk, det[:4]) # Filter out those are not overlaped at all location_mask = (coord_affinity>0) if self.deep_sort and len(detboxes) * len(boxes_order) > 0: feat_affinity += location_mask * \ tu.compute_cos_dis(feats, trk_feats_order) self.affinity = self.coord_3d_affinity_weight * coord_affinity + \ self.feat_affinity_weight * feat_affinity # Assignment matched, unmatched_dets, unmatched_trks = \ tu.associate_detections_to_trackers( detboxes, boxes_order, self.affinity, self.affinity_threshold) # update matched trackers with assigned detections for t, trkidx in enumerate(idxes_order): if t in unmatched_trks: self.trackers[trkidx].lost = True self.trackers[trkidx].aff_value *= 0.9 continue d = matched[np.where(matched[:, 1] == t)[0], 0] if self.kf3d: self.trackers[trkidx].update(world_coords[d[0]]) elif self.lstm3d or self.lstmkf3d: self.trackers[trkidx].update(world_coords[d[0]]) self.trackers[trkidx].lost = False self.trackers[trkidx].aff_value = self.affinity[d, t].item() self.trackers[trkidx].det = dets[d, :][0] self.trackers[trkidx].trk_box = boxes_order[t] feat_alpha = 1 - feat_affinity[d, t].item() self.trackers[trkidx].feat += feat_alpha * (self.current_frame['feat'][d[0]] - self.trackers[trkidx].feat) self.trackers[trkidx].dim = self.current_frame['dim'][d[0]] self.trackers[trkidx].alpha = self.current_frame['alpha'][d[0]] self.trackers[trkidx].depth = self.current_frame['depth'][d[0]] self.trackers[trkidx].cen = self.current_frame['center'][d[0]] self.trackers[trkidx].rot = self.current_frame['roty'][d[0]] # create and initialise new trackers for unmatched detections for i in unmatched_dets: if self.kf3d: trk = KalmanBox3dTracker(world_coords[i]) elif self.lstm3d: trk = LSTM3dTracker(self.device, self.lstm, world_coords[i]) elif self.lstmkf3d: trk = LSTMKF3dTracker(self.device, self.lstm, world_coords[i]) trk.det = dets[i, :] trk.trk_box = detboxes[i] trk.feat = self.current_frame['feat'][i] trk.dim = self.current_frame['dim'][i] trk.alpha = self.current_frame['alpha'][i] trk.depth = self.current_frame['depth'][i] trk.cen = self.current_frame['center'][i] trk.rot = self.current_frame['roty'][i] self.trackers.append(trk) # Check if boxes are correct if self.visualize: img = cv2.imread(data['im_path'][0]) _h, _w, _ = img.shape img = cv2.putText(img, str(self.frame_count), (20, 30), cv2.FONT_HERSHEY_COMPLEX, 1, (200, 200, 200), 2) lost_color = (0, 150, 150) occ_color = (150, 0, 150) trk_color = (0, 255, 0) det_color = (255, 0, 0) gt_color = (0, 0, 255) cb = 5 for idx, (box, po, trk) in enumerate(zip(trkboxes, trkpoints, self.trackers)): box_color = lost_color if trk.lost else trk_color box_color = occ_color if trk.occ else box_color box_bold = 2 if trk.lost or trk.occ else 4 box = box.astype('int') print(trk.id+1, 'Lost' if trk.lost else 'Tracked', '{:2d}'.format(trk.time_since_update), '{:.02f} {:.02f}'.format(trk.aff_value, trkdepths[idx]), trk.get_history()[-1].flatten(), trk.get_state() ) if trkdepths[idx] < 0 or trkdepths[idx] > self.max_depth: continue ''' for (ii,jj) in po: img = cv2.line(img, (int(ii[0]), int(ii[1])), (int(jj[0]), int(jj[1])), box_color, box_bold) #''' img = cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), box_color, box_bold-1) img = cv2.rectangle(img, (int(trk.cen[0])-cb, int(trk.cen[1])-cb), (int(trk.cen[0])+cb, int(trk.cen[1])+cb), box_color, box_bold) img = cv2.putText(img, '{}'.format(trk.id+1), (int(box[0]), int(box[1])+20), cv2.FONT_HERSHEY_COMPLEX, 1, box_color, box_bold) img = cv2.putText(img, '{:.02f}'.format(trk.aff_value), (int(box[0]-14), int(box[3])+20), cv2.FONT_HERSHEY_COMPLEX, 0.8, box_color, box_bold) img = cv2.putText(img, str(int(trkdepths[idx])), (int(box[2])-14, int(box[3])), cv2.FONT_HERSHEY_COMPLEX, 0.8, box_color, box_bold) if len(data['alpha_gt']) > 0: valid_rots = np.zeros_like(data['alpha_gt'])[:, np.newaxis] for idx, (alpha, det, center) in enumerate( zip(data['alpha_gt'], data['rois_gt'], data['center_gt'])): valid_rots[idx] = tu.alpha2rot_y( alpha, center[0] - self.W//2, FOCAL_LENGTH=self.cam_calib[0][0]) loc_gt = tu.point3dcoord(data['center_gt'], data['depth_gt'], self.cam_calib, self.cam_pose) if self.dataset == 'kitti': loc_gt[:, 2] += data['dim_gt'][:, 0] / 2 #bbgt, depgt, ptsgt = tu.construct2dlayout(loc_gt, data['dim_gt'], valid_rots, # self.cam_calib, # self.cam_pose) for idx, (tid, boxgt, cengt) in enumerate(zip(data['tid_gt'], data['rois_gt'], data['center_gt'])): detgt = boxgt.astype('int') cengt = cengt.astype('int') img = cv2.rectangle(img, (detgt[0], detgt[1]), (detgt[2], detgt[3]), gt_color, 2) img = cv2.rectangle(img, (cengt[0]-cb, cengt[1]-cb), (cengt[0]+cb, cengt[1]+cb), gt_color, 4) ''' for (ii,jj) in ptsgt[idx]: img = cv2.line(img, (int(ii[0]), int(ii[1])), (int(jj[0]), int(jj[1])), gt_color, 2) #''' for idx, (det, detbox, detpo, cen) in enumerate(zip(dets, detboxes, detpoints, cens)): #det = det.astype('int') detbox = detbox.astype('int') cen = cen.astype('int') ''' for (ii,jj) in detpo: img = cv2.line(img, (int(ii[0]), int(ii[1])), (int(jj[0]), int(jj[1])), det_color, 2) #''' #img = cv2.rectangle(img, (det[0], det[1]), (det[2], det[3]), det_color, 2) img = cv2.rectangle(img, (detbox[0], detbox[1]), (detbox[2], detbox[3]), det_color, 2) img = cv2.rectangle(img, (cen[0]-cb, cen[1]-cb), (cen[0]+cb, cen[1]+cb), det_color, 4) img = cv2.putText(img, str(int(detdepths[idx])), (int(detbox[2])-14, int(detbox[3])), cv2.FONT_HERSHEY_COMPLEX, 0.8, det_color, 4) key = 0 while(key not in [ord('q'), ord(' '), 27]): _f = 0.5 if _h > 600 else 1.0 cv2.imshow('preview', cv2.resize(img, (0, 0), fx=_f, fy=_f)) key = cv2.waitKey(1) if key == 27: cv2.destroyAllWindows() exit() # Get output returns and remove dead tracklet i = len(self.trackers) for trk in reversed(self.trackers): if self.kf3d: dep_ = tu.worldtocamera(trk.kf.x[:3].T, self.cam_pose)[0, 2] elif self.lstm3d or self.lstmkf3d: dep_ = tu.worldtocamera(trk.x[:3][np.newaxis], self.cam_pose)[0, 2] if (trk.time_since_update < 1) and not trk.occ and ( trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): # +1 as MOT benchmark requires positive height = float(trk.det[3] - trk.det[1]) width = float(trk.det[2] - trk.det[0]) hypo = {'height': height, 'width': width, 'trk_box': trk.trk_box.tolist(), 'det_box': trk.det.tolist(), 'id': trk.id + 1, 'x': int(trk.cen[0]), 'y': int(trk.cen[1]), 'dim': trk.dim.tolist(), 'alpha': trk.alpha.item(), 'roty': trk.rot.item(), 'depth': float(dep_) } ret.append(hypo) i -= 1 # remove dead tracklet if dep_ <= self.occ_min_depth or dep_ >= self.occ_max_depth or \ (trk.time_since_update > self.max_age and not trk.occ): self.trackers.pop(i) return ret