コード例 #1
0
ファイル: embeddings.py プロジェクト: JoseRPrietoF/autoria
    def __init__(
        self,
        x_train,
        y_train,
        x_test,
        y_test,
        fnames_train,
        fnames_test,
        embedding,
        MAX_SEQUENCE_LENGTH,
        EMBEDDING_DIM=300,
        OPTIMIZER='adam',
        logger=None,
        opts=None,
        by_acc=True,
        n_classes=4,
    ):
        """
        Vars
        """

        MODEL = opts.model
        #FOR RNN
        HIDDEN_UNITS = 4
        NUM_LAYERS = 1

        BATCH_SIZE = 64  # Any size is accepted

        labelencoder = LabelEncoder()  # set
        y_train_ = np.array(y_train).astype(str)
        y_test_ = np.array(y_test).astype(str)
        labelencoder.fit(y_train_)
        y_train_ = labelencoder.transform(y_train_)
        y_test_ = labelencoder.transform(y_test_)
        n_values = len(np.unique(y_train_))
        # To One hot
        y_train = to_categorical(y_train_, n_values)
        y_test = to_categorical(y_test_, n_values)

        logger.info("texts_rep_train: {}".format(x_train.shape))
        logger.info("y_train: {}".format(x_test.shape))
        """""" """""" """""" """""" """""" """""
        # Tensorflow
        """ """""" """""" """""" """""" """""" ""

        batch_size = tf.placeholder(tf.int64, name="batch_size")
        X = tf.placeholder(tf.int64, shape=[None, MAX_SEQUENCE_LENGTH])
        fnames_plc = tf.placeholder(tf.string, shape=[None], name="fnames_plc")
        y = tf.placeholder(tf.int64, shape=[None, n_classes])
        is_training = tf.placeholder_with_default(False,
                                                  shape=[],
                                                  name='is_training')
        dropout_keep_prob = tf.placeholder_with_default(1.0, shape=())
        lr = tf.placeholder(tf.float32, shape=[])

        glove_weights_initializer = tf.constant_initializer(embedding)
        print(glove_weights_initializer)
        embeddings = tf.Variable(
            # tf.random_uniform([2000, EMBEDDING_DIM], -1.0, 1.0)
            embedding)

        print(embeddings)
        """
        GET THE MODEL
        """
        if MODEL == "CNN":
            logits = CNN.get_model(X,
                                   W=embeddings,
                                   is_training=is_training,
                                   filters=opts.filters,
                                   n_classes=n_classes,
                                   logger=logger)
        elif MODEL == "RNN":
            logits = RNN.get_model(X,
                                   W=embeddings,
                                   dropout_keep_prob=dropout_keep_prob,
                                   hidden_size=HIDDEN_UNITS,
                                   n_classes=n_classes,
                                   num_layers=NUM_LAYERS)

        print(logits)
        softmax = tf.nn.softmax(logits)

        num_params = np.sum([
            np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()
        ])

        print("{} params to train".format(num_params))

        train_op, loss = train_ops.train_op(logits,
                                            y=y,
                                            learning_rate=lr,
                                            optimizer=OPTIMIZER)
        """"""
        """Test de embeddings"""

        train_dataset = tf.data.Dataset.from_tensor_slices(
            (X, y, fnames_plc)).batch(batch_size).shuffle(buffer_size=12)
        test_dataset = tf.data.Dataset.from_tensor_slices(
            (X, y, fnames_plc)).batch(batch_size).shuffle(buffer_size=12)

        train_data = (x_train, y_train, fnames_train)
        test_data = (x_test, y_test, fnames_test)

        # create a iterator of the correct shape and type
        iter = tf.data.Iterator.from_structure(train_dataset.output_types,
                                               train_dataset.output_shapes)
        iter_test = tf.data.Iterator.from_structure(test_dataset.output_types,
                                                    test_dataset.output_shapes)

        # create the initialisation operations
        train_init_op = iter.make_initializer(train_dataset)
        test_init_op = iter_test.make_initializer(test_dataset)

        epoch_start = 0
        ## Train
        sess = tf.Session()
        init_g = tf.global_variables_initializer()
        init_l = tf.local_variables_initializer()
        sess.run(init_g)
        sess.run(init_l)
        best_loss = 99999
        best_acc = 0
        for epoch in range(epoch_start, opts.epochs + 1):
            sess.run(train_init_op,
                     feed_dict={
                         X: train_data[0],
                         y: train_data[1],
                         fnames_plc: train_data[2],
                         batch_size: BATCH_SIZE,
                     })

            current_batch_index = 0
            next_element = iter.get_next()
            loss_count = 0
            while True:

                try:
                    data = sess.run([next_element])
                except tf.errors.OutOfRangeError:
                    break

                current_batch_index += 1
                data = data[0]
                batch_x, batch_tgt, batch_fnames = data

                _, loss_result = sess.run(
                    [train_op, loss],
                    feed_dict={
                        X: batch_x,
                        y: batch_tgt,
                        lr: train_ops.lr_scheduler(epoch),
                        batch_size: BATCH_SIZE,
                        is_training: True,
                        dropout_keep_prob: 0.3,
                    })
                # print("Loss: {}".format(loss_result))
                loss_count += loss_result

            loss_count = loss_count / current_batch_index

            acc = 0
            if not by_acc:
                if loss_count < best_loss:
                    best_loss = loss_count
                    logger.info("New best_loss : {}".format(best_loss))
                    sesions.save_best(sess, opts.work_dir)
            else:
                """
                ---------------- dev
                """
                sess.run(test_init_op,
                         feed_dict={
                             X: test_data[0],
                             y: test_data[1],
                             fnames_plc: test_data[2],
                             batch_size: BATCH_SIZE,
                         })

                current_batch_index = 0
                next_element = iter_test.get_next()
                while True:

                    try:
                        data = sess.run([next_element])
                    except tf.errors.OutOfRangeError:
                        break

                    current_batch_index += 1
                    data = data[0]
                    batch_x, batch_tgt, batch_fnames = data

                    results = sess.run(
                        [softmax],
                        feed_dict={
                            X: batch_x,
                            y: batch_tgt,
                            fnames_plc: batch_fnames,
                            batch_size: BATCH_SIZE,
                            dropout_keep_prob: 1.0,
                            lr: train_ops.lr_scheduler(1)
                        })

                    acc_aux = metrics.accuracy(X=results[0], y=batch_tgt)
                    acc += acc_aux

                acc = acc / current_batch_index
                logger.info("----------")
                logger.info("Loss on epoch {} : {} - LR: {}".format(
                    epoch, loss_count, train_ops.lr_scheduler(epoch)))
                logger.info("Acc Val Test {}".format(acc))

                if acc > best_acc:
                    best_acc = acc
                    logger.info("New acc : {}".format(best_acc))
                    sesions.save_best(sess, opts.work_dir)
        """
        ----------------- TEST -----------------
        """
        logger.info("\n-- TEST --\n")
        logger.info("Restoring the best Checkpoint.")
        # restore_file = sesions.restore_from_best(sess, save_path)
        restore_file = sesions.restore_from_best(sess, opts.work_dir)
        if restore_file:
            logger.info("Best model restored")
        else:
            logger.info("Cant restore the best model.")
            exit()

        sess.run(test_init_op,
                 feed_dict={
                     X: test_data[0],
                     y: test_data[1],
                     fnames_plc: test_data[2],
                     batch_size: BATCH_SIZE,
                 })

        current_batch_index = 0
        next_element = iter_test.get_next()
        classifieds = []
        while True:

            try:
                data = sess.run([next_element])
            except tf.errors.OutOfRangeError:
                break

            current_batch_index += 1
            data = data[0]
            batch_x, batch_tgt, batch_fnames = data

            results = sess.run(
                [softmax],
                feed_dict={
                    X: batch_x,
                    y: batch_tgt,
                    fnames_plc: batch_fnames,
                    batch_size: BATCH_SIZE,
                    dropout_keep_prob: 1.0,
                    lr: train_ops.lr_scheduler(1)
                })
            results = results[0]

            acc_aux = metrics.accuracy(X=results, y=batch_tgt)
            acc += acc_aux
            for i in range(len(results)):
                hyp = [np.argmax(results[i], axis=-1)]
                hyp = labelencoder.inverse_transform(hyp)[
                    0]  # real label   #set

                doc_name = batch_fnames[i].decode("utf-8").split("/")[-1]

                tgt = [np.argmax(batch_tgt[i], axis=-1)]
                tgt = labelencoder.inverse_transform(tgt)[
                    0]  # real label   #set

                # to vote
                classifieds.append((hyp, doc_name, tgt))
            # print(classifieds)
            # exit()

        acc = acc / current_batch_index
        logger.info("----------")
        logger.info("Acc Val Test {}".format(acc))
        #
        # per_doc = classify_per_doc(classifieds, logger=logger)
        # logger.info("----------")
        # logger.info("Acc Val Test Per document votation {}".format(metrics.accuracy_per_doc(per_doc)))
        # logger.info("----------")
        # [print(x) for x in classifieds_to_write]
        self.results = classifieds
コード例 #2
0
ファイル: tfidf.py プロジェクト: JoseRPrietoF/autoria
    def __init__(self,
                 layers=[512, 256, 128, 64, 32],
                 filters=[64, 128, 256, 512],
                 MODEL="FF",
                 HIDDEN_UNITS=32,
                 NUM_LAYERS=2,
                 do_val=False,
                 OPTIMIZER='adam',
                 DEV_SPLIT=0.2,
                 NUM_EPOCH=50,
                 min_ngram=1,
                 up=5,
                 max_features=None,
                 dataset="PAN2019",
                 logger=None,
                 opts=None,
                 DEBUG=False,
                 lang="es"):
        """
        Vars
        """
        BATCH_SIZE = opts.batch_size
        logger = logger or logging.getLogger(__name__)
        # MODEL = "RNN"
        # MODEL = "CNN"
        if not DEBUG:

            ## PAN
            path = opts.tr_data + '/' + lang
            path_test = opts.i + '/' + lang
            sent = 0
            if lang == 'en': sent = 0
            if do_val:
                txt_train = opts.file_i + "/{}/truth-train.txt".format(lang)
                txt_dev = opts.file_i + "/{}/truth-dev.txt".format(lang)
                dt_train = process.PAN2019(path=path,
                                           txt=txt_train,
                                           join_all=MODEL == "FF",
                                           sentiment_id=sent)
                dt_dev = process.PAN2019(path=path,
                                         txt=txt_dev,
                                         join_all=MODEL == "FF",
                                         sentiment_id=sent)
                fnames_dev = dt_dev.fnames
                y_dev = dt_dev.y
                x_dev = dt_dev.X
                # sent_dev = dt_dev.sentiment
                del dt_dev
            else:
                txt_train = opts.file_i + "/{}/truth.txt".format(lang)
                dt_train = process.PAN2019(path=path,
                                           txt=txt_train,
                                           join_all=MODEL == "FF",
                                           sentiment_id=sent)

            dt_test = process.PAN2019_Test(path=path_test,
                                           join_all=MODEL == "FF",
                                           sentiment_id=sent)
            n_classes = 2  # bot or not bot

            # sent_train = dt_train.sentiment
            # sent_test = dt_test.sentiment

            x_train = dt_train.X
            y_train = dt_train.y
            y2_train = dt_train.y2
            print(len(x_train))
            print(len(y_train))
            print(len(y2_train))

            x_test = dt_test.X
            # y_test = dt_test.y

            fnames_train = dt_train.fnames
            fnames_test = dt_test.fnames

            labelencoder = LabelEncoder()  #set
            y_train_ = np.array(y_train).astype(str)
            # y_test_ = np.array(y_test).astype(str)
            labelencoder.fit(y_train_)
            y_train_ = labelencoder.transform(y_train_)
            # y_test_ = labelencoder.transform(y_test_)
            n_values = len(np.unique(y_train_))
            # To One hot
            y_train = to_categorical(y_train_, n_values)

            # y_test = to_categorical(y_test_, n_values)

            if max_features:

                rep = TfidfVectorizer(ngram_range=(min_ngram, up),
                                      max_features=max_features)
            else:
                rep = TfidfVectorizer(ngram_range=(min_ngram, up))

            del dt_train
            del dt_test

            logger.info("fit_transform tfidf")
            texts_rep_train = rep.fit_transform(x_train)
            logger.info("To array")
            texts_rep_train = texts_rep_train.toarray()

            logger.info("transform tfidf")
            text_test_rep = rep.transform(x_test)
            logger.info("To array")
            text_test_rep = text_test_rep.toarray()
            if do_val:
                text_dev_rep = rep.transform(x_dev)
                text_dev_rep = text_dev_rep.toarray()
                y_dev_ = np.array(y_dev).astype(str)
                y_dev_ = labelencoder.transform(y_dev_)
                y_dev = to_categorical(y_dev_, n_values)

            if MODEL == "CNN":
                num = opts.num_tweets
                texts_rep_train = texts_rep_train.reshape(
                    int(texts_rep_train.shape[0] / num), num,
                    texts_rep_train.shape[1])
                text_test_rep = text_test_rep.reshape(
                    int(text_test_rep.shape[0] / num), num,
                    text_test_rep.shape[1])

        else:
            logger.info(" --------------- DEBUG ON ------------------")
            n_classes = 2
            n_vcab = 10000
            train_data = 128
            dev_data = 50
            texts_rep_train = np.random.randn(train_data, 100, n_vcab)
            text_test_rep = np.random.randn(dev_data, 100, n_vcab)
            y_train = np.eye(n_classes)[np.random.choice(
                n_classes, train_data)]
            y_test = np.eye(n_classes)[np.random.choice(n_classes, dev_data)]

            alphabet = list(
                'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'
            )
            np_alphabet = np.array(alphabet, dtype="|S1")
            fnames_train = np.random.choice(np_alphabet, [train_data])
            fnames_test = np.random.choice(np_alphabet, [dev_data])
            logger.info("Random data created")

        # print(len(sent_train))
        # print(texts_rep_train.shape)
        # texts_rep_train = np.concatenate((texts_rep_train, np.expand_dims(sentiment.append([blob.sentiment.polarity, blob.sentiment.subjectivity]),axis=1)), axis=-1)
        # text_test_rep = np.concatenate((text_test_rep, np.expand_dims(sent_test,axis=1)), axis=-1)
        # text_dev_rep = np.concatenate((text_dev_rep, np.expand_dims(sent_dev,axis=1)), axis=-1)
        # texts_rep_train = np.concatenate((texts_rep_train, sent_train), axis=-1)
        logger.info("texts_rep_train: {}".format(texts_rep_train.shape))
        logger.info("y_train: {}".format(y_train.shape))

        # X_train, X_val, X_test, y_train, y_val, y_test, MAX_SEQUENCE_LENGTH = prepare_data(
        #     dir_word_embeddings, fname_vocab, train_path, test_path, EMBEDDING_DIM,
        #     VALIDATION_SPLIT=DEV_SPLIT, MAX_SEQUENCE_LENGTH=MAX_SEQUENCE_LENGTH
        # )
        """""" """""" """""" """""" """""" """""
        # Tensorflow
        """ """""" """""" """""" """""" """""" ""

        batch_size = tf.placeholder(tf.int64, name="batch_size")
        if MODEL == "CNN":
            X = tf.placeholder(tf.float32,
                               shape=[
                                   None, texts_rep_train.shape[1],
                                   texts_rep_train.shape[2]
                               ],
                               name="X")
        else:
            X = tf.placeholder(tf.float32,
                               shape=[None, len(texts_rep_train[0])],
                               name="X")
        print(X)
        y = tf.placeholder(tf.int64, shape=[None, n_classes], name="y")
        fnames_plc = tf.placeholder(tf.string, shape=[None], name="fnames_plc")
        lr = tf.placeholder(tf.float32, shape=[], name="lr")
        is_training = tf.placeholder_with_default(False,
                                                  shape=[],
                                                  name='is_training')
        dropout_keep_prob = tf.placeholder_with_default(1.0,
                                                        shape=(),
                                                        name="dropout")
        """
        GET THE MODEL
        """
        if MODEL == "CNN":
            logits = CNN.get_model(X,
                                   is_training=is_training,
                                   filters=filters,
                                   n_classes=n_classes,
                                   tf_idf=True,
                                   logger=logger)
        elif MODEL == "RNN":
            logits = RNN.get_model(X,
                                   dropout_keep_prob,
                                   hidden_size=HIDDEN_UNITS,
                                   n_classes=n_classes,
                                   num_layers=NUM_LAYERS)
        elif MODEL == "FF":
            logits = FF.get_model(X,
                                  dropout_keep_prob,
                                  is_training=is_training,
                                  layers=layers,
                                  n_classes=n_classes)
        logger.info(logits)
        softmax = tf.nn.softmax(logits)

        num_params = np.sum([
            np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()
        ])

        logger.info("{} params to train".format(num_params))

        train_op, loss = train_ops.train_op(logits,
                                            y,
                                            learning_rate=lr,
                                            optimizer=OPTIMIZER)
        """"""
        """Test de embeddings"""

        train_dataset = tf.data.Dataset.from_tensor_slices(
            (X, y, fnames_plc)).batch(batch_size).shuffle(buffer_size=12)
        dev_dataset = tf.data.Dataset.from_tensor_slices(
            (X, y, fnames_plc)).batch(batch_size).shuffle(buffer_size=12)
        test_dataset = tf.data.Dataset.from_tensor_slices(
            (X, fnames_plc)).batch(batch_size).shuffle(buffer_size=12)

        train_data = (texts_rep_train, y_train, fnames_train)
        if do_val:
            dev_data = (text_dev_rep, y_dev, fnames_dev)
        test_data = (text_test_rep, fnames_test)
        print(text_test_rep.shape)
        print(len(fnames_test))

        # create a iterator of the correct shape and type
        iter = tf.data.Iterator.from_structure(train_dataset.output_types,
                                               train_dataset.output_shapes)
        iter_test = tf.data.Iterator.from_structure(test_dataset.output_types,
                                                    test_dataset.output_shapes)

        # create the initialisation operations
        train_init_op = iter.make_initializer(train_dataset)
        dev_init_op = iter.make_initializer(dev_dataset)
        test_init_op = iter_test.make_initializer(test_dataset)

        epoch_start = 0
        ## Train
        sess = tf.Session()
        init_g = tf.global_variables_initializer()
        init_l = tf.local_variables_initializer()
        sess.run(init_g)
        sess.run(init_l)
        best_acc = 0
        for epoch in range(epoch_start, NUM_EPOCH + 1):
            sess.run(train_init_op,
                     feed_dict={
                         X: train_data[0],
                         y: train_data[1],
                         fnames_plc: train_data[2],
                         batch_size: BATCH_SIZE,
                     })

            current_batch_index = 0
            next_element = iter.get_next()
            loss_count = 0
            while True:

                try:
                    data = sess.run([next_element])
                except tf.errors.OutOfRangeError:
                    break

                current_batch_index += 1
                data = data[0]
                batch_x, batch_tgt, batch_fnames = data

                _, loss_result = sess.run(
                    [train_op, loss],
                    feed_dict={
                        X: batch_x,
                        y: batch_tgt,
                        lr: train_ops.lr_scheduler(epoch),
                        batch_size: BATCH_SIZE,
                        is_training: True,
                        dropout_keep_prob: 0.3,
                    })
                # print("Loss: {}".format(loss_result))
                loss_count += loss_result

            loss_count = loss_count / current_batch_index
            logger.info("Loss on epoch {} : {} - LR: {}".format(
                epoch, loss_count, train_ops.lr_scheduler(epoch)))
            acc = 0
            if do_val:
                print("Eval")
                ## Eval
                sess.run(
                    dev_init_op,
                    feed_dict={
                        # sess.run(dev_init_op, feed_dict={
                        X: dev_data[0],
                        y: dev_data[1],
                        fnames_plc: dev_data[2],
                        batch_size: BATCH_SIZE,
                    })

                current_batch_index = 0
                next_element = iter.get_next()

                while True:

                    try:
                        data = sess.run([next_element])
                    except tf.errors.OutOfRangeError:
                        break

                    current_batch_index += 1
                    data = data[0]
                    batch_x, batch_tgt, batch_fnames = data

                    results = sess.run(
                        [softmax],
                        feed_dict={
                            X: batch_x,
                            y: batch_tgt,
                            lr: train_ops.lr_scheduler(epoch),
                            batch_size: BATCH_SIZE,
                            is_training: False,
                            dropout_keep_prob: 1.0
                        })
                    results = results[0]
                    acc_aux = metrics.accuracy(X=results, y=batch_tgt)
                    acc += acc_aux

                acc = acc / current_batch_index
                print("Acc Val epoch {} : {}".format(epoch, acc))
                print("----------")
                if acc > best_acc:
                    best_acc = acc
                    logger.info("New acc : {}".format(best_acc))
                    save_best(sess, opts.work_dir)
        if opts.testing and opts.do_val:
            logger.info("Model: {}".format(MODEL))
            logger.info("layers: {}".format(layers))
            logger.info("max_features: {}".format(max_features))
            logger.info("Min and max features: {} - {}".format(min_ngram, up))
            logger.info("Best acc : {}".format(best_acc))
            exit()
        """
        ----------------- TEST -----------------
        """
        logger.info("\n-- TEST --\n")
        logger.info("Restoring the best Checkpoint.")
        # restore_file = sesions.restore_from_best(sess, save_path)
        restore_file = restore_from_best(sess, opts.work_dir)
        if restore_file:
            logger.info("Best model restored")
        else:
            logger.info("Cant restore the best model.")
            exit()
        Y_FALSA = np.random.randint(1, size=(BATCH_SIZE, n_classes))
        print(Y_FALSA.shape)
        logger.info("\n-- TEST --\n")

        sess.run(test_init_op,
                 feed_dict={
                     X: test_data[0],
                     y: Y_FALSA,
                     fnames_plc: test_data[1],
                     batch_size: BATCH_SIZE,
                 })

        current_batch_index = 0
        next_element = iter_test.get_next()
        loss_count = 0
        classifieds = []
        classifieds_to_write = []
        while True:

            try:
                data = sess.run([next_element])
            except tf.errors.OutOfRangeError:
                break

            current_batch_index += 1
            data = data[0]
            batch_x, batch_fnames = data

            results = sess.run(
                [softmax],
                feed_dict={
                    X: batch_x,
                    y: Y_FALSA,
                    batch_size: BATCH_SIZE,
                    dropout_keep_prob: 1.0,
                    lr: train_ops.lr_scheduler(1)
                })

            for i in range(len(results[0])):
                # to write
                hyp = [np.argmax(results[0][i], axis=-1)]
                hyp = labelencoder.inverse_transform(hyp)[
                    0]  #real label   #set
                doc_name = batch_fnames[i].decode("utf-8").split("/")[-1]

                classifieds_to_write.append((doc_name, lang, hyp))

        logger.info("----------")
        logger.info("Writting results in output dir {}".format("{}/{}".format(
            opts.o, lang)))

        if sent != 2 and lang == 'en':
            dt_train = process.PAN2019(path=path,
                                       txt=txt_train,
                                       join_all=MODEL == "FF",
                                       sentiment_id=2)
            x_train = dt_train.X
            y2_train = dt_train.y2
            del dt_train
            if max_features:
                rep = TfidfVectorizer(ngram_range=(min_ngram, up),
                                      max_features=max_features)
            else:
                rep = TfidfVectorizer(ngram_range=(min_ngram, up))
            texts_rep_train = rep.fit_transform(x_train).toarray()
            dt_test = process.PAN2019_Test(path=path_test,
                                           join_all=MODEL == "FF",
                                           sentiment_id=2)
            del dt_test
            x_test = dt_test.X
            text_test_rep = rep.transform(x_test).toarray()

        process.write_from_array(classifieds_to_write,
                                 "{}/{}".format(opts.o, lang), x_train,
                                 texts_rep_train, y2_train, x_test,
                                 text_test_rep, fnames_test)
コード例 #3
0
            while True:

                try:
                    data = sess.run([next_element])
                except tf.errors.OutOfRangeError:
                    break

                current_batch_index += 1
                data = data[0]
                batch_x, batch_tgt, batch_fnames = data

                _, loss_result = sess.run([train_op, loss],
                                          feed_dict={
                                              X: batch_x,
                                              y: batch_tgt,
                                              lr: train_ops.lr_scheduler(epoch),
                                              batch_size: BATCH_SIZE,
                                              is_training: True,
                                              dropout_keep_prob: 0.3,

                                          })
                # print("Loss: {}".format(loss_result))
                loss_count += loss_result

            loss_count = loss_count / current_batch_index
            logger.info("Loss on epoch {} : {} - LR: {}".format(epoch, loss_count, train_ops.lr_scheduler(epoch)))
            acc = 0
            # if do_val:
            #     print("Eval")
            #     ## Eval
            #     sess.run(dev_init_op, feed_dict={
コード例 #4
0
            data = sess.run([next_element])
        except tf.errors.OutOfRangeError:
            break

        current_batch_index += 1
        data = data[0]
        batch_x, batch_tgt = data

        _, loss_result = sess.run(
            [train_op, loss],
            feed_dict={
                X: batch_x,
                y: batch_tgt,
                batch_size: BATCH_SIZE,
                is_training: True,
                lr: train_ops.lr_scheduler(epoch),
                dropout_keep_prob: 0.5
            })
        loss_count += loss_result

    loss_count = loss_count / current_batch_index
    print("Loss on epoch {} : {}".format(epoch, loss_count))
    print("Eval")
    ## Eval
    sess.run(
        dev_init_op,
        feed_dict={
            # sess.run(dev_init_op, feed_dict={
            X: dev_data[0],
            y: dev_data[1],
            batch_size: BATCH_SIZE,