def _get_args(args=None): import sys import os sys.path.append(os.path.join(CUR_DIR, '..')) from utils import util parser, arg = util.get_args_parser('dataset') arg('--data-directory', type=str, help='data are loading from here') arg('--count', type=int, default=10, help='samples count to show') arg('--phase', type=str, default='train', metavar='train|valid', help='dataset of which phase to show') arg('--path', '-p', type=str, nargs='+', default=None, help='path of image to show') return parser.parse_args(args)
def _get_args(args=None): import sys import os sys.path.append(os.path.join(CUR_DIR, '..')) from utils import util parser, arg = util.get_args_parser('Classes_make_anno') arg('--data-directory', type=str, help='data are loading from here'), return parser.parse_args(args)
def get_args_parser(self, actions=actions, default_action='train', args=None): from utils.util import get_args_parser parser, arg = get_args_parser('logloader') actions_str = '|'.join(actions.keys()) arg('--save-directory', type=str, default='out', help='save directory') arg('--execid', type=str, default=None, help='sub directory') arg('--action', '-a', metavar=actions_str, type=str, default=default_action, help='actions') parse_args = parser.__getattribute__('parse_args') def _parse_args(*args, **kwargs): args = parse_args(*args, **kwargs) args.root_log_file = 'log.log' args.sub_log_file = 'log.log' return args parser.__setattr__('parse_args', _parse_args) return parser, arg
def get_args_parser(self, description, args=None): from utils.util import get_args_parser parser, arg = get_args_parser(description) arg('--phase', type=str, default='train', metavar='|'.join(self.get_phases()), help='phase to run') arg('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') arg('--test-batch-size', type=int, default=64, metavar='N', help='input batch size for testing (default: 64)') arg('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 100)') arg('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') arg('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') arg('--no-cuda', action='store_true', default=False, help='disables CUDA training') arg('--seed', type=int, default=1, metavar='Seed', help='random seed (default: 1)') arg('--log-interval', type=int, default=5, metavar='N', help='how many batches to wait before logging training status') arg('--save-model', action='store_true', default=True, help='save the current Model') arg('--model', type=str, default='Net', help='model name') arg('--save-directory', type=str, default='out', help='learnt models and logs are saving here') arg('--data-directory', type=str, help='data are loading from here') arg('--model-file', type=str, help='model are loading from here') arg('--predict-indices', type=str, default='all', help='sample indices to predict') arg('--no-cache-image', action='store_true', default=False, help='should cache image in memory') arg('--retry', action='store_true', default=True, help='loss为nan时是否自动需要调整参数重试') return parser, arg