loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() losses = [] accuracies = [] epochs = [1, 5, 10, 50, 100, 500, 1000] for e in epochs: model.fit(Xtrain, ytrain, epochs=e) out = model.evaluate(Xtest, ytest) losses.append(out[0]) accuracies.append(out[1]) print('\n* * * Data Summarized * * *') for i in range(len(epochs)): print('Epochs:', epochs[i], 'Loss:', losses[i], 'Accuracy:', accuracies[i]) df = pd.DataFrame({'epochs': epochs, 'loss': losses, 'accuracy': accuracies}) csv_name = f'./../../outputs/v1-b/activation_study/varied-epoch-{activation}-sp_out.csv' df.to_csv(csv_name, index=False) message = 'Subject: {}\n\n{}'.format( 'ML Model Update', f'{csv_name.split("/")[-1]} finished computing...' f'\n\n* * * * Results * * * *\n' f'{df}' f'\n\nThanks! =(^_^)=') mail(['*****@*****.**'], message)
]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() losses = [] accuracies = [] epochs = [1, 5, 10, 50, 100, 500, 1000] for e in epochs: model.fit(Xtrain, ytrain, epochs=e) out = model.evaluate(Xtest, ytest) losses.append(out[0]) accuracies.append(out[1]) print('\n* * * Data Summarized * * *') for i in range(len(epochs)): print('Epochs:', epochs[i], 'Loss:', losses[i], 'Accuracy:', accuracies[i]) df = pd.DataFrame({ 'epochs': epochs, 'loss': losses, 'accuracy': accuracies }) df.to_csv('./outputs/v1-b/varied-epoch-4HL.csv', index=False) mail(['*****@*****.**'])